EXHIBIT K ENVIRONMENTAL ASSESMENT

APPENDIX G/INITIAL STUDY FOR A NEGATIVE DECLARATION

Environmental Checklist Form for: EA No. P18-02233

1.	Project title:
	Environmental Assessment Application No. P18-02233
2.	Lead agency name and address:
	City of Fresno Development and Resource Management Department 2600 Fresno Street Fresno, CA 93721
3.	Contact person and phone number:
	Jarred Olsen, Planner III City of Fresno Development and Resource Management Dept. (559) 621-8277
4.	Project location:
	2999 South Orange Avenue ±3.92 acres of property located on the northeast corner of East North and South Orange Avenues
	Site Latitude: 36°41'34.39" N Site Longitude: -119°45'44.18" W
	Mount Diablo Base & Meridian, Township 14S, Range 20E Section 23 – California
	Assessor's Parcel Number: 487-140-32
5.	Project sponsor's name and address:
	Neil Angelillo Kettleman 99 LP 1155 W. Shaw Road, Suite #104 Fresno, CA,93711
6.	General & Community plan land use designation:
	Heavy Industrial
7.	Zoning:
	Heavy Industrial

8. **Description of project:**

Environmental Assessment No. P18-02233 was filed by Chris Ward, on behalf of Kettleman 99 LP. The applicant proposes to construct 13,325 gross square feet (sf) of commercial, retail, fast food, and fuel uses on the 3.92-acre project site. The development would include two phases: development of a 3,062 gross sf 7-Eleven building with 12 gas pumps and a 2,263 gross sf Panda Express restaurant building during Phase 1, and a 5,000 gross sf future retail building and a 3,000 gross sf future fast food building during Phase 2. The Panda Express restaurant, the future fast food building, and the future retail building would include drive-throughs. The project would also include development of the associated infrastructure, parking, and circulation improvements.

Entitlements

Environmental Assessment No. P18-02233 would require a Conditional Use Permit. Conditional Use Permits are required for Drive-Through Facilities and Alcohol Sales within the Heavy Industrial zoning designation.

9. Surrounding land uses and setting:

	Planned Land Use	Existing Zoning	Existing Land Use
North	Heavy Industrial	IH (Heavy Industrial)	East Bay Tire Company industrial building
East	Heavy Industrial	IH (Heavy Industrial)	State Route (SR) 99 off-ramp
South	Heavy Industrial	IH (Heavy Industrial)	Vacant industrial lot
West	Heavy Industrial	IH (Heavy Industrial)	Coast Aluminum and Architecture, Inc. industrial building

- Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement): Development and Resource Management Department, Building & Safety Services Division; Department of Public Works; Department of Public Utilities; County of Fresno, Department of Community Health; County of Fresno, Department of Public Works and Planning; City of Fresno Fire Department; Fresno Metropolitan Flood Control District; and San Joaquin Valley Air Pollution Control District.
- 11. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code (PRC) Section 21080.3.1? If so, has consultation begun?

The State requires lead agencies to consider the potential effects of proposed projects and consult with California Native American tribes during the local planning process for the purpose of protecting Traditional Tribal Cultural Resources through the California Environmental Quality Act (CEQA) Guidelines. Pursuant to PRC Section 21080.3.1, the lead agency shall begin

consultation with the California Native American tribe that is traditionally and culturally affiliated with the geographical area of the proposed project. Such significant cultural resources are either sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a tribe which is either on or eligible for inclusion in the California Historic Register or local historic register, or, the lead agency, at its discretion, and support by substantial evidence, choose to treat the resources as a Tribal Cultural Resources (PRC Section 21074(a)(1-2)). According to the most recent census data, California is home to 109 currently recognized Indian tribes. Tribes in California currently have nearly 100 separate reservations or Rancherias. Fresno County has a number of Rancherias such as Table Mountain Rancheria, Millerton Rancheria, Big Sandy Rancheria, Cold Springs Rancheria, and Squaw Valley Rancheria. These Rancherias are not located within the city limits.

Note: Conducting consultation early in the CEQA process allows tribal governments, lead agencies, and project proponents to discuss the level of environmental review, identify and address potential adverse impacts to tribal cultural resources, and reduce the potential for delay and conflict in the environmental review process. (See PRC Section 21083.3.2.) Information may also be available from the California Native American Heritage Commission's Sacred Lands File per PRC Section 5097.96 and the California Historical Resources Information System administered by the California Office of Historic Preservation. Please also note that PRC Section 21082.3(c) contains provisions specific to confidentiality.

Pursuant to Assembly Bill 52 (AB 52), the Table Mountain Rancheria Tribe and the Dumna Wo Wah were invited to consult under AB 52. The City of Fresno mailed notices of the proposed project to each of these tribes on October 26, 2018 which included the required 30-day time period for tribes to request consultation.

Under invitations to consult AB 52, one of the two contacted tribes responded. The Table Mountain Rancheria of California declined consultation via mail on January 8, 2019.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

Aesthetics	Agriculture and Forestry Resources	Air Quality
Biological Resources	Cultural Resources	Energy
Geology/Soils	Greenhouse Gas Emissions	Hazards & Hazardous Materials
Hydrology/Water Quality	Land Use/Planning	Mineral Resources
Noise	Population /Housing	Public Services
Recreation	Transportation	Tribal Cultural Resources
Utilities/Service Systems	Wildfire	Mandatory Findings of Significance

DETERMINATION: (To be completed by the Lead Agency)

On the basis of this initial evaluation:

	I find that the proposed project could not have a significant effect on the environment. A NEGATIVE DECLARATION will be prepared.
X	I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
	I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
	I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
	I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

EVALUATION OF ADDITIONAL ENVIRONMENTAL IMPACTS NOT ASSESSED IN THE MASTER ENVIRONMENTAL IMPACT REPORT (MEIR):

April 26, 2019 Date

- 1. For purposes of this Initial Study, the following answers have the corresponding meanings:
 - a. "No Impact" means the subsequent project will not cause any additional significant effect related to the threshold under consideration which was not previously examined in the MEIR.
 - b. "Less Than Significant Impact" means there is an impact related to the threshold under consideration that was not previously examined in the MEIR, but that impact is less than significant;
 - c. "Less Than Significant with Mitigation Incorporation" means there is a potentially significant impact related to the threshold under consideration that was not previously examined in the MEIR, however, with the mitigation incorporated into the project, the impact is less than significant.
 - d. "Potentially Significant Impact" means there is an additional potentially significant effect related to the threshold under consideration that was not previously examined in the MEIR.

- 2. A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 3. All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 4. Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 5. "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from Section XVII, "Earlier Analyses," may be cross-referenced).
- 6. Earlier analyses may be used where, pursuant to the tiering, program EIR or MEIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a. Earlier Analysis Used. Identify and state where they are available for review.
 - b. Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in the MEIR or another earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c. Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 7. Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 8. Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 9. This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.

- 10. The explanation of each issue should identify:
 - a. The significance criteria or threshold, if any, used to evaluate each question; and
 - b. The mitigation measure identified, if any, to reduce the impact to less than significance.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
I. AESTHETICS – Except as provided in	Public Resource	es Code Section 21	099, would the $ $	oroject:
a) Have a substantial adverse effect on a scenic vista?			X	
b) Substantially damage scenic resources, including, but not limited to, trees, rock out-croppings, and historic buildings within a state scenic highway?			X	
c) In nonurbanized areas, substantially degrade the existing visual character or quality of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?			X	
d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?			Х	

The site is located within an area undergoing continued growth in development. Areas to the north, west, and south have been developed and continue to be developed with industrial uses, while the subject property is vacant. Property to the north has been developed with an East Bay Tire Company industrial building. To the east lies a SR 99 off-ramp. Property to the south is currently vacant. Property to the north has been developed with a Coast Aluminum Architecture, Inc. industrial building. The existing topography of the subject property is nearly flat, with elevations ranging from 285 to 288 feet above mean sea level.

A scenic vista is a viewpoint that provides a distant view of highly valued natural or man-made landscape features for the benefit of the general public. Typical scenic vistas are locations where views of rivers, hillsides, and open space areas can be obtained as well as locations where valued urban landscape features can be viewed in the distance.

The Fresno General Plan MEIR provides and recognizes that the City has not identified or designated scenic vistas within its General Plan. Although no scenic vista has been designated, it is

acknowledged that scenic vistas within the Planning Area could provide distant views of natural landscape features such as the San Joaquin River along the northern boundary of the Planning Area and the foothills of the Sierra Nevada Mountain Range. The River bluffs provide distant views of the San Joaquin River as well as areas north of the River. However, the majority of these views are from private property. There are limited views of the San Joaquin River from Weber Avenue, Milburn Avenue, McCampbell Drive, Valentine Avenue, Palm Avenue, State Route 41, Friant Road, and Woodward Park. There are various locations throughout the eastern portion of the Planning Area that provide views of the Sierra Nevada foothills that are located northeast and east of the Planning Area. These distant views of the Sierra Nevada foothills are impeded many days during the year by the poor air quality in the Fresno region. Distant views of man-made landscape features include the Downtown Fresno buildings that provide a unique skyline.

Scenic resources include landscapes and features that are visually or aesthetically pleasing. They contribute positively to a distinct community or region. These resources produce a visual benefit upon communities. The scenic resources within the Planning Area include landscaped open spaces such as parks and golf courses. Additional scenic resources within the Planning Area include areas along the San Joaquin River due to the topographic variation in the relatively flat San Joaquin Valley. The River bluffs provide a unique geological feature in the San Joaquin Valley. Historic structures in Downtown Fresno buildings also represent scenic resources because they provide a unique skyline.

Although superseded by the Fresno General Plan (§15-104-B-4.b of the FMC) the Bullard Community Plan previously depicted six vista points along the bluffs overlooking the San Joaquin River bottom and environs. Two of the vista points within Riverview Estates were recognized as having either been developed or committed to development through tentative map approval, prior to the establishment of the Bullard Community Plan standards. As a result, the two committed sites were considered minimal facilities with potential access and other problems. To avoid such future problems, standards were prepared within the Bullard Community Plan to guide development of the four remaining vista points.

The purpose of the vista points was to provide limited bluff access to non-area residents and to offer panoramic views of the river bluffs and river bottom. Such views were considered best be enjoyed as part of a passive recreational experience where one can stop, relax and absorb the natural beauty of the river environment. As such, the vista points were recommended to be designed to accommodate local residents who walk, non-area residents who bike, and the driving public.

None of the six vista point locations shown on the Bullard Community Plan Map are located in the nearby vicinity of the subject property. Each vista point is located over 10 miles to the north of the project site. As such, impacts related to these vista points would not occur.

Given the site's distance from the San Joaquin River (i.e., approximately 12 miles northwest of the site), the proposed project will not interfere with public views of the San Joaquin River environs. Furthermore, as there are no designated public or scenic vistas on or adjacent to the subject property, there is no potential for adverse effect on a scenic vista.

Furthermore, the Fresno General Plan MEIR recognizes and acknowledges that poor air quality reduces existing views within the City of Fresno sphere of influence as a whole, and therefore finds that a less than significant impact will result to views of highly valued features such as the Sierra Nevada foothills from future development on and in the vicinity of the subject property.

Finally, the project site is not within the vicinity of a State designated scenic highway.

The project will not damage nor will it degrade the visual character or quality of the subject site and its surroundings, given that the project site is in an area within close proximity to existing industrial development; and, in an area generally planned for and developed with industrial uses at comparable intensities.

Future development of the site will create a new source of substantial light or glare within the area. However, given that the project site is within an area which has been previously developed or is currently being developed with urban and industrial uses, which already affect day and night time views in the project area to a degree equal or greater than the proposed project, no significant impact will occur. The project would be subject to the applicable mitigation measures pertaining to light and glare included in in MEIR SCH No. 2012111015.

Furthermore, through the entitlement process, staff will ensure that lights are located in areas that will minimize light sources to the neighboring properties in accordance with the mitigation measures of the MEIR.

In conclusion, with MEIR mitigation measures incorporated, the project will not result in any aesthetic resource impacts beyond those analyzed in MEIR SCH No. 2012111015. Therefore, the project will have a less-than-significant impact on aesthetics.

Mitigation Measures

1. The proposed project shall implement and incorporate, as applicable, the aesthetics related mitigation measures as identified in the attached MEIR SCH No. 2012111015 Fresno General Plan Mitigation Monitoring Checklist dated March 2019.

Potentially

Less Than

Less Than

ENVIRONMENTAL ISSUES	Significant Impact	Significant with Mitigation Incorporated	Significant Impact	No Impact		
II. AGRICULTURE AND FORESTRY RESOURCES – In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:						
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farm-land), as shown on the maps prepared pursuant to the Farmland Mapping and Monito-ring Program of the California Resources Agency, to non-agricultural use?				X		
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?				Х		

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact		
II. AGRICULTURE AND FORESTRY RI	II. AGRICULTURE AND FORESTRY RESOURCES - In determining whether impacts to agricultural					
resources are significant environmental						
Land Evaluation and Site Assessment M	` ,	•	-			
as an optional model to use in assessing				•		
impacts to forest resources, including tim				•		
may refer to information compiled by						
regarding the state's inventory of forest la		•		•		
the Forest Legacy Assessment project;				rovided in		
Forest Protocols adopted by the Californ		Board. Would the	project:	T		
c) Conflict with existing zoning for, or						
cause rezoning of, forest land (as defined in Public Resources Code						
section 12220(g)), timberland (as						
defined by Public Resources Code				X		
section 4526), or timberland zoned						
Timberland Production (as defined by						
Government Code section 51104(g))?						
d) Result in the loss of forest land or						
conversion of forest land to non-forest				Χ		
use?						
e) Involve other changes in the existing						
environment which, due to their location				Χ		
or nature, could result in conversion of						
Farmland, to non-agricultural use?						

Based upon the upon the 2016 Rural Land Mapping Edition: Fresno County Important Farmland Map of the State of California Department of Conservation, the project site is designated "Urban and Built-Up Land". The area to the south of the site, opposite North Avenue, is designated as "Farmland of Local Importance". The area to the north, east, and west of the site is also designated "Urban and Built-Up Land".

"Farmland of Local Importance" is defined as farmland within Fresno County that does not meet the definitions of Prime, Statewide, or Unique. This includes land that is or has been used for irrigated pasture, dryland farming, confined livestock and dairy, poultry facilities, aquaculture and grazing land.

The subject property is vacant and is currently not utilized for rural residential or agricultural purposes.

The Fresno General Plan MEIR analyzed "project specific" impacts associated with future development within the Planning Area (Sphere of Influence) as well as the cumulative impacts factored from future development in areas outside of the Planning Area. The MEIR identifies locations within the Planning Area that have been designated as Prime Farmland, Unique Farmland, and Farmland of Statewide Importance through the Farmland Mapping and Monitoring Program (FMMP) of the California Department of Conservation. The analysis of impacts contained within the MEIR acknowledges that Fresno General Plan implementation anticipates all of the FMMP-designated farmland within the Planning Area being converted to uses other than agriculture.

Furthermore, the MEIR acknowledges that the anticipated conversion is a significant impact on agricultural resources.

To reduce potential project-specific and cumulative impacts on agricultural uses, the General Plan incorporates objectives and policies, which include but are not limited to the following:

G-5 Objective: While recognizing that the County of Fresno retains the primary responsibility for agricultural land use policies and the protection and advancement of farming operations, the City of Fresno will support efforts to preserve agricultural land outside of the area planned for urbanization and outside of the City's public service delivery capacity by being responsible in its land use plans, public service delivery plans, and development policies.

G-5-b. Policy: Plan for the location and intensity of urban development in a manner that efficiently utilizes land area located within the planned urban boundary, including the North and Southeast Growth Areas, while promoting compatibility with agricultural uses located outside of the planned urban area.

G-5-f. Policy: Oppose lot splits and development proposals in unincorporated areas within and outside the City General Plan boundary when these proposals would do any of the following:

- Make it difficult or infeasible to implement the general plan; or,
- Contribute to the premature conversion of agricultural, open space, or grazing lands; or constitute a detriment to the management of resources and/or facilities important to the metropolitan area (such as air quality, water quantity and quality, traffic circulation, and riparian habitat).

However, the MEIR recognizes that despite implementation of the objectives and policies of the Fresno General Plan, project and cumulative impacts on agricultural resources will remain significant; and, that no feasible measures in addition to the objectives and policies of the Fresno General Plan are available.

In 2014, through passage of Council Resolution No. 2014-225, the City of Fresno adopted Findings of Fact related to Significant and Unavoidable Effects as well as Statements of Overriding Considerations in order to certify MEIR SCH No. 2012111015 for purposes of adoption of the Fresno General Plan. Section 15093 of the California Environmental Quality Act requires the lead agency to balance the benefits of a proposed project against its unavoidable environmental risks in determining whether to approve the project.

The adopted Statements of Overriding Considerations for the MEIR addressed Findings of Significant Unavoidable Impacts within the categories/areas of Agricultural Resources; citing specific economic, legal, social, technological, or other considerations, including provision of employment opportunities for highly trained workers as project goals, each and all of which were deemed and considered by the Fresno City Council to be benefits, which outweighed the unavoidable adverse environmental effects attributed to development occurring within the City of Fresno Sphere of Influence (SOI), consistent with the land uses, densities, and intensities set forth in the Fresno General Plan.

The project site is and continues to be further encompassed with urban development. The project site is a logical expansion for purposes of orderly development within existing City limits. Agricultural uses are not permitted within the existing Heavy Industrial zone district. Additionally, the project site is not designated Prime Farmland, Unique Farmland, or Farmland of Statewide Importance. Given

these circumstances, the proposed project is consistent with the goals, objective and policies of the Fresno General Plan as referenced herein above; and, will not result in the premature conversion of agricultural lands or constitute a detriment to the management of agricultural resources and/or facilities important to the metropolitan area.

The subject property is not subject to a Williamson Act agricultural land conservation contract. Therefore, the proposed project on the subject site will not affect existing agriculturally zoned or Williamson Act contract parcels.

The proposed project will not conflict with any forest land or Timberland Production or result in any loss of forest land.

As discussed in Impact AG-1 of the MEIR, future development in accordance with the Fresno General Plan would result in the conversion of farmland to a non-agricultural use. Except for direct conversion, the implementation of project development would not result in other changes in the existing environment that would impact agricultural land outside of the project boundary or Planning Area. In addition, development in accordance with the General Plan would not impact forest land as discussed in Section 7.2.1 of this Draft Master EIR. Therefore, the project would result in no impact on farmland or forest land involving other changes in the existing environment which fall outside of the scope of the analyses contained within the MEIR.

Therefore, the proposed project will not have an impact on converting farmland, Williamson Act contracts or forestland. In conclusion, the proposed project would not result in any agriculture and forestry resource environmental impacts beyond those analyzed in the MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact			
· ·	III. AIR QUALITY – Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations.						
a) Conflict with or obstruct implementation of the applicable air quality plan (e.g., by having potential emissions of regulated criterion pollutants which exceed the San Joaquin Valley Air Pollution Control Districts (SJVAPCD) adopted thresholds for these pollutants)?			X				
b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?			X				

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
III. AIR QUALITY – Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:				
c) Expose sensitive receptors to substantial pollutant concentrations?			×	
d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?				Х

<u>Setting</u>

The subject site is located in the City of Fresno and within the San Joaquin Valley Air Basin (SJVAB). This region has had chronic non-attainment of federal and state clean air standards for ozone/oxidants and particulate matter due to a combination of topography and climate. The San Joaquin Valley (Valley) is hemmed in on three sides by mountain ranges, with prevailing winds carrying pollutants and pollutant precursors from urbanized areas to the north (and in turn contributing pollutants and precursors to downwind air basins). The Mediterranean climate of this region, with a high number of sunny days and little or no measurable precipitation for several months of the year, fosters photochemical reactions in the atmosphere, creating ozone and particulate matter. Regional factors affect the accumulation and dispersion of air pollutants within the SJVAB.

Air pollutant emissions overall are fairly constant throughout the year, yet the concentrations of pollutants in the air vary from day to day and even hour to hour. This variability is due to complex interactions of weather, climate, and topography. These factors affect the ability of the atmosphere to disperse pollutants. Conditions that move and mix the atmosphere help disperse pollutants, while conditions that cause the atmosphere to stagnate allow pollutants to concentrate. Local climatological effects, including topography, wind speed and direction, temperature, inversion layers, precipitation, and fog can exacerbate the air quality problem in the SJVAB.

The SJVAB is approximately 250 miles long and averages 35 miles wide, and is the second largest air basin in the state. The SJVAB is defined by the Sierra Nevada in the east (8,000 to 14,000 feet in elevation), the Coast Ranges in the west (averaging 3,000 feet in elevation), and the Tehachapi mountains in the south (6,000 to 8,000 feet in elevation). The Valley is basically flat with a slight downward gradient to the northwest. The Valley opens to the sea at the Carquinez Straits where the San Joaquin-Sacramento Delta empties into San Francisco Bay. The Valley, thus, could be considered a "bowl" open only to the north.

During the summer, wind speed and direction data indicate that summer wind usually originates at the north end of the Valley and flows in a south-southeasterly direction through the Valley, through Tehachapi pass, into the Southeast Desert Air Basin. In addition, the Altamont Pass also serves as a funnel for pollutant transport from the San Francisco Bay Area Air Basin into the region.

During the winter, wind speed and direction data indicate that wind occasionally originates from the south end of the Valley and flows in a north-northwesterly direction. Also during the winter months, the Valley generally experiences light, variable winds (less than 10 mph). Low wind speeds, combined with low inversion layers in the winter, create a climate conducive to high carbon monoxide (CO) and particulate matter (PM10 and PM2.5) concentrations. The SJVAB has an "Inland Mediterranean" climate averaging over 260 sunny days per year. The Valley floor is characterized by warm, dry summers and cooler winters. For the entire Valley, high daily temperature readings in summer average 95°F. Temperatures below freezing are unusual. Average high temperatures in the winter are in the 50s, but highs in the 30s and 40s can occur on days with persistent fog and low cloudiness. The average daily low temperature is 45°F.

The vertical dispersion of air pollutants in the Valley is limited by the presence of persistent temperature inversions. Solar energy heats up the Earth's surface, which in turn radiates heat and warms the lower atmosphere. Therefore, as altitude increases, the air temperature usually decreases due to increasing distance from the source of heat. A reversal of this atmospheric state, where the air temperature increases with height, is termed an inversion. Inversions can exist at the surface or at any height above the ground, and tend to act as a lid on the Valley, holding in the pollutants that are generated here.

Regulations

The San Joaquin Valley Air Pollution Control District (SJVAPCD) is the local regional jurisdictional entity charged with attainment planning, rulemaking, rule enforcement, and monitoring under Federal and State Clean Air Acts and Clean Air Act Amendments.

To aid in evaluating potentially significant construction and/or operational impacts of a project, SJVAPCD has prepared an advisory document, the Guide for Assessing and Mitigating Air Quality Impacts (GAMAQI), which contains standard procedures for addressing air quality in CEQA documents. GAMAQI presents a three-tiered approach to air quality analysis. The Small Project Analysis Level (SPAL) is first used to screen the project for potentially significant impacts. A project that meets the screening criteria at this level requires no further analysis and air quality impacts of the project may be deemed less than significant. If a project does not meet all the criteria at this screening level, additional screening is recommended at the Cursory Analysis Level and, if warranted, the Full Analysis Level. For heavy industrial uses, the threshold is 920,000 sf units. Given that the project related applications have been filed to facilitate the creation and development of 13,325 sf of industrial uses, the proposed project is considered to have less than significant impacts pertaining to air emissions and is excluded from quantifying criteria pollutant emissions for CEQA purposes.

It is noted that an Air Quality Technical Memorandum was completed for the proposed project in order to analyze criteria air pollutants and toxic air contaminants (TACs) associated with construction and operation of the project. The Memorandum is included as Appendix A of this document.

SJVAPCD Regulation VIII mandates requirements for any type of ground moving activity and would be adhered to during construction; however, during construction, air quality impacts would be less than SJVAPCD thresholds for non-attainment pollutants and operation of the project would not result in impacts to air quality standards for criteria pollutants.

The SJVAPCD accounts for cumulative impacts to air quality in its GAMAQI. The SJVAPCD considered basin-wide cumulative impacts to air quality when developing its significance thresholds. The SJVAPCD's air quality significance thresholds represent the maximum emissions from a project

that are not expected to conflict with the SJVAPCD's air quality plans, and is not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard. These are developed based on the ambient concentrations of the pollutant for each source. Because the project would not exceed the air quality significance thresholds on the project-level, and would not otherwise conflict with the SJVAPCD's air quality plans, the cumulative emissions would not be a significant contribution to a cumulative impact.

The proposed project would comply with the SJVAPCD's Regulation VIII dust control requirements during any proposed construction (including Rules 8011, 8031, 8041, and 8071). Compliance with this regulation would reduce the potential for significant localized PM10 impacts to less than significant levels.

<u>Project</u>

An Air Quality Technical Memorandum was prepared for the proposed project (Stantec, 2018). See Appendix A. As discussed in the Memorandum, the project's construction emissions would not exceed the SJVAPCD's criteria pollutant thresholds. The operational emissions would also not exceed the SJVAPCD's criteria pollutant thresholds. Based on the results, construction and operation of the proposed project would not result in any significant impacts to air quality from a regional or localized perspective.

Further, the SJVAPCD recommends that a screening analysis be performed to determine if a refined Health Risk Assessment (HRA) should be performed. The District's recommended method for screening risks is by using its prioritization calculator based on the California Air Pollution Control Officers Facility Prioritization Guidelines (August 2016). The prioritization calculator will provide a score based on the emission potency method. The prioritization score is an indicator of a facility's potential risk. Scores of 10 or greater indicate that a refined HRA should be prepared because there is the potential for a significant health risk. Scores less than 10 indicate that the project's TAC emissions are not a high risk.

The various TACs that would be emitted from the project include: Benzene, Toluene, and Xylene from the gasoline dispensing facility and diesel engine exhaust from delivery vehicles to the project site. These TACs, in significant quantities, are known to the State of California to cause developmental and reproductive harm. According to the Air Quality Technical Memorandum, the maximum prioritization score total for the proposed project is 2.51 to the nearest worksite receptor. This is less than the SJVAPCD recommended screening threshold of 10 for conducting a refined HRA. The maximum prioritization score for the nearest residential receptor is 0.00251. Based on the score of 2.51, the proposed project would not result in a significant health risk and does not require a refined HRA.

District Rule 9510 was adopted to reduce the impact of NOx and provide emission reductions needed by the SJVAPCD to demonstrate attainment of the federal PM10 standard and contributed reductions that assist in attaining federal ozone standards. Rule 9510 also contributes toward attainment of state standards for these pollutants. The rule places application and emission reduction requirements on development projects meeting applicability criteria in order to reduce emissions through onsite mitigation, offsite SJVAPCD-administered projects, or a combination of the two. Compliance with SJVAPCD Rule 9510 reduces the emissions impacts through incorporation of onsite measures as well as payment of an offsite fee that funds emission reduction projects in the Air Basin. The

emissions analysis for Rule 9510 is detailed and is dependent on the exact project design that is expected to be constructed or installed. Compliance with Rule 9510 is separate from the CEQA process, though the control measures used to comply with Rule 9510 may be used to mitigate significant air quality impacts.

As noted above, the SJVAPCD reviewed and approved the AIA application for the proposed project. The SJVAPCD determined that the mitigated baseline emissions for construction and operation will be less than two tons NOx per year and two tons PM10 per year. Therefore, pursuant to district Rule 9510, Section 4.3, the project is exempt from the requirements of Section 6.0 (General Mitigation Requirements) and Section 7.0 (Off-site Emission Reduction Fee Calculations and Fee Schedules) of the rule. As such, the SJVAPCD determined that the project complies with emission reduction requirements of District Rule 9510 and is not subject to payment of off-site fees.

The proposed use, if approved, will be allowed on the subject site and will not expose sensitive receptors to substantial pollutant concentrations. The project is not proposing a use which will create objectionable odors more obnoxious than the current surrounding non-residential uses. Decomposition of biological materials, such as food waste and other trash, could create objectionable odors if not properly contained and handled. The proposed project would provide waste receptacles throughout the project site and would utilize outdoor trash dumpsters with lids, which would be picked up regularly during normal solid waste collection operating hours within the area. The dumpster lids are intended to contain odors emanating from the dumpsters. The dumpsters would be stored in screened areas for further protection from potential objectionable odors. The garbage collected onsite and stored in the outdoor dumpsters would not be on-site long enough to cause substantial odors. Thus, the outdoor, enclosed, and covered trash dumpsters that would be picked up regularly would provide proper containment and handling of the trash generated on-site. Therefore, there will be no impact related to odors.

The growth projections used for the Fresno General Plan assume that growth in population, vehicle use and other source categories will occur at historically robust rates that are consistent with the rates used to develop the SJVAPCD's attainment plans. In other words, the amount of growth predicted for the General Plan is accommodated by the SJVAPCD's attainment plan and would allow the air basin to attain the 8-hour ozone standard by the 2023 attainment date. Future development on the subject property is required to comply with these rules and regulations providing additional support for the conclusion that it will not interfere or obstruct with the application of the attainment plans.

Therefore, compliance with all of the above SJVAPCD Rules, Fresno General Plan policies and MEIR mitigation measures results in a less than significant impact on air quality with respect to air quality plans and standards and cumulative increases in criteria pollutants.

The proposed project will comply with the Resource Conservation Element of the Fresno General Plan and the Goals, Policies and Objectives of the Regional Transportation Plan adopted by the Fresno Council of Fresno County Governments; therefore, the project will not conflict with or obstruct an applicable air quality plan.

In conclusion, the proposed project would not result in any air quality environmental impacts beyond those analyzed in the MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
IV. BIOLOGICAL RESOURCES – Would	d the project:			
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?		X		
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?			X	
c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?			X	
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?			Х	
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?			Х	
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?			Х	

The proposed project will not directly affect any sensitive, special status, or candidate species, nor would it modify any habitat that supports them.

Riparian habitat or any other sensitive natural community identified by the California Department of Fish and Game or the US Fish and Wildlife Service are not located on the subject property. In addition, no federally protected wetlands are located on the subject site. Therefore, there would be no impacts to riparian species or habitat or other sensitive wetland communities.

The project site is generally vacant only containing grasses or shrubs, which based on its location, do not provide suitable habitat for any special-status plant species and limited habitat for special-status wildlife species. A few landscape trees are also located at the corner of E. North Avenue and S. Orange Avenue.

Wildlife species that often occur within vacant fields include gophers, California ground squirrels, mourning dove, mockingbird, white-crowned sparrows, and ravens. Other wildlife that would be expected to occur within orchards would be similar to those occurring in adjacent ruderal habitats or agricultural fields.

Mammal species may also occur within intermittent fallow agricultural lands and on lands with broken topography similar to portions of the subject property. These mammals could include: deer mice, house mice, pocket gopher and California ground squirrels. These species would occur in fluctuating numbers depending on the available cover in the individual fields. California ground squirrels are sometimes known to burrow complexes at the margins or within areas of some fields where annual disking may not reach. Other small mammals likely to occur from time to time may include blacktailed hares and cottontail rabbits.

The presence of birds and small mammals is an attractant to both foraging raptors, such as hawks and owls, and mammalian predators. Mammalian predators occurring on the site could include raccoons, coyotes, and red foxes, as these species are tolerant of human and other disturbance. Various species of bat may also forage over portions of the subject site for flying insects.

A number of special status species, such as San Joaquin kit fox, American Badger Western burrowing owl, Swainson hawk, tricolored blackbird, California horned lark, pallid bat, hoary bat, and western mastiff bat have some potential as resident seasonal or transient inhabitant of habitats such as those which may be found on the site.

The federally endangered and California threatened San Joaquin kit fox once occurred throughout much of the San Joaquin Valley, but this species favored areas of alkali sink scrub and alkali grassland throughout the San Joaquin Valley and Tulare Basin, as well as areas further west. The low foothills of the Sierra Nevada at the eastern edge of the San Joaquin Valley is considered at the margin of their natural range.

The project site may provide marginal habitat for American badgers in the form of temporary ruderal grasslands. This species is known to occur within areas with friable soils which support California ground squirrels and it prefers open habitats (herbaceous growth, shrubs or forest). Typically, loss of linkages to large tracks of open grassland minimizes the potential presence of this species. Large tracks of open grassland are not located in the project vicinity. Additionally, there are only two documented occurrences of American badger within the City of Fresno, and the closest occurrence to the project site is located 7.6 miles to the northeast. It is highly unlikely that the project site is used by American badger.

The burrowing owl is a small, terrestrial owl of open prairie and grassland habitats. It inhabits relatively flat dry open grasslands where tree and shrub canopies provide minimal cover. This

species is found in close association with California ground squirrels, using the abandoned burrows of these squirrels for shelter, roosting, and nesting. Burrowing owls are colonially nesting raptors, and colony size is indicative of habitat quality. It is not uncommon to find burrowing owls in developed and cultivated areas. The project site provides marginal habitat for this species in the form of temporary ruderal grasslands that support California ground squirrels.

The Swainson hawk requires a supply of small mammals such as young ground squirrels as prey for nestlings and elevated perches for hunting. Therefore, it favors open and semi-open country over agricultural fields which may offer its prey too much cover. The Swainson hawk is considered to be generally tolerant of people and attracted to certain agricultural operations which disturb soils and displace prey which burrow or nest in those soils or from farm equipment which turn up insects. Such soil disturbances do regularly occur on the subject property. The project site is located near existing open and semi-open lands to the south of the site, which may provide suitable foraging habitat for Swainson hawk. The project site provides marginal foraging habitat for this species.

Tricolored blackbirds nest in cattails, bulrushes, Himalaya berry, and agricultural silage, in areas that are flooded or otherwise defended against easy access by predators. Tricolored blackbirds forage away from nesting sites, and large colonies require large foraging areas; the birds eat insects, small fruits, seeds, and small aquatic life. Suitable habitat for foraging includes irrigated pasture, dry rangeland, and dairy operations providing successive harvest and flooding conditions. Orchards, row crops, and vineyards may occasionally and briefly be used as foraging habitat; however, these areas are not known to sustain breeding colonies. Tricolored blackbirds could occasionally forage over the project site; however, habitat suitable for nesting tricolored blackbirds is generally not found on the project site.

Horned larks, which feed on seeds and insects, are ground nesters. The frequent soil disturbance on the project site precludes the presence of this species.

Pallid bat, hoary bat, and western mastiff bat are relatively reclusive and are not expected to breed on the project site, but they may forage on or near the site from time to time. Hoary bats and western mastiff bats eat insects, while pallid bats eat insects, other invertebrates, and small vertebrates that they find on the ground or on vegetation. The project site would not constitute uniquely important habitat for these species.

Use of ruderal/nonnative grassland habitat by native terrestrial vertebrates is generally considered common in agricultural fields. This includes birds and small mammals which serve as an attractant to both foraging raptors, such as hawks and owls, and mammalian predators; as well as, those terrestrial and/or ground-nesting special status species preferring open prairie and/or grassland habitats.

Mitigation Measure MM BIO-1 of MEIR SCH No. 2012111015 for the Fresno General Plan requires construction of a proposed project to avoid, where possible, vegetation communities that provide suitable habitat for a special-status species known to occur within the Planning Area. If construction within potentially suitable habitat must occur, the presence/absence of any special-status plant or wildlife species must be determined prior to construction, to determine if the habitat supports any special-status species. If special-status species are determined to occupy any portion of a project site, avoidance and minimization measures shall be incorporated into the construction phase of a project to avoid direct or incidental take of a listed species to the greatest extent feasible.

Furthermore, Mitigation Measure MM BIO-2 of MEIR SCH No. 2012111015 for the Fresno General Plan requires that any direct or incidental take of any state or federally listed species should be

avoided to the greatest extent feasible. If construction of a proposed project will result in the direct or incidental take of a listed species, consultation with the resources agencies and/or additional permitting may be required. Agency consultation through the California Department of Fish and Wildlife (CDFW) 2081 and U.S. Fish and Wildlife Service (USFWS) Section 7 or Section 10 permitting processes must take place prior to any action that may result in the direct or incidental take of a listed species. Specific mitigation measures for direct or incidental impacts to a listed species will be determined through agency consultation.

Mitigation Measure MM BIO – 4 of MEIR SCH No. 2012111015 for the Fresno General Plan requires projects within the Planning Area to avoid, if possible, construction within the general nesting season of February through August for avian species protected under Fish and Game Code 3500 and the Migratory Bird Treaty Act (MBTA), if it is determined that suitable nesting habitat occurs on a project site. If construction cannot avoid the nesting season, a pre-construction clearance survey must be conducted to determine if any nesting birds or nesting activity is observed on or within 500-feet of a project site. If an active nest is observed during the survey, a biological monitor must be on site to ensure that no proposed project activities would impact the active nest. A suitable buffer will be established around the active nest until the nestlings have fledged and the nest is no longer active. Project activities may continue in the vicinity of the nest only at the discretion of the biological monitor.

Natural communities of special concern are those that are of limited distribution, distinguished by significant biological diversity, home to special status plant and animal species, of importance in maintaining water quality or sustaining flows, etc. Examples of natural communities of special concern in the San Joaquin Valley could include: open, ruderal/nonnative grassland habitat, which is infrequently disturbed, vernal pools and various types of riparian forest. No natural communities of special concern were identified on the project site.

Wildlife movement corridors are areas where wildlife species regularly and predictably move during foraging, or during dispersal or migration. Movement corridors in California are typically associated with valleys, rivers and creeks supporting riparian vegetation, and ridgelines. Such geographic and topographic features are absent from the project site. Additionally, due to the presence of developed lands and urban uses surrounding the subject property, there is limited potential for project related activities to have an impact on the movement of wildlife species or established wildlife corridors. Compliance with the biological Mitigation Measures of MEIR SCH No. 2012111015 for the Fresno General Plan through preparation of a pre-construction biological survey prior to construction, to determine if the project site supports any special-status species. If a special-status species is determined to occupy any portion of a project site, avoidance and minimization measures shall be incorporated into the construction phase of a project to avoid direct or incidental take of a listed species to the greatest extent feasible.

No habitat conservation plans or natural community conservation plans in the region pertain to natural resources that exist on the subject site or in its immediate vicinity.

Implementation of all Biological Resource related mitigation measures of MEIR SCH No. 2012111015 for the Fresno General Plan have been applied to the proposed project. Therefore, no actions or activities resulting from the implementation of the proposed project would have the potential to affect floral, or faunal species; or, their habitat. Therefore, there will be no impacts to Biological Resources.

In conclusion, with the MEIR and Project Specific Mitigation Measures incorporated the proposed project will not result in any biological resource impacts beyond those analyzed in MEIR SCH No. 2012111015.

Mitigation Measures

- 1. The proposed project shall implement and incorporate, as applicable, the biological resources related mitigation measures as identified in the attached MEIR SCH No. 2012111015 Fresno General Plan Mitigation Monitoring Checklist dated March 2019.
- The proposed project shall implement and incorporate the biological resources related mitigation measure as identified in the attached Project Specific Mitigation Monitoring Checklist dated March 2019.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
V. CULTURAL RESOURCES – Would t	he project:			
a) Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?		X		
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?		X		
c) Disturb any human remains, including those interred outside of formal cemeteries?		Х		

There are no structures which exist within the project area that are listed in the National or Local Register of Historic Places, and the subject site is not within a designated historic district. There are no known archaeological or paleontological resources that exist within the project area.

There is no evidence that cultural resources of any type (including historical, archaeological, paleontological, or unique geologic features) exist on the subject property. Nevertheless, there is some possibility that a buried site may exist in the area and be obscured by vegetation, fill, or other historic activities, leaving no surface evidence. Furthermore, previously unknown paleontological resources or undiscovered human remains could be disturbed during project construction.

Therefore, due to the ground disturbing activities that will occur as a result of the project, the measures within the MEIR SCH No. 2012111015 for the Fresno General Plan, Mitigation Monitoring Checklist to address archaeological resources, paleontological resources, and human remains will be employed to guarantee that should archaeological and/or animal fossil material be encountered during project excavations, then work shall stop immediately; and, that qualified professionals in the respective field are contacted and consulted in order to ensure that the activities of the proposed project will not involve physical demolition, destruction, relocation, or alteration of historic, archaeological, or paleontological resources.

Furthermore, as indicated within Section XVII, Tribal Cultural Resources, of this initial study, tribal consultation has occurred for the proposed project in compliance with AB52 requirements. Under

invitations to consult under AB 52, one of the two contacted tribes responded. The Table Mountain Rancheria of California declined consultation via mail on January 8, 2019.

In conclusion, with implementation of the MEIR Cultural Resource Mitigation measures and project specific mitigation measures related to Tribal Cultural Resources incorporated herein below, the project will not result in any cultural resource impacts beyond those analyzed in MEIR SCH No. 2012111015.

Mitigation Measures

1. The proposed project shall implement and incorporate, as applicable, the cultural resource related mitigation measures as identified in the attached MEIR SCH No. 2012111015 Fresno General Plan Mitigation Monitoring Checklist dated March 2019.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
VI. ENERGY – Would the project:				
a) Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?			X	
b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?			Х	

Appendix F of the State CEQA Guidelines requires consideration of the potentially significant energy implications of a project. CEQA requires mitigation measures to reduce "wasteful, inefficient and unnecessary" energy usage (Public Resources Code Section 21100, subdivision [b][3]). According to Appendix F of the CEQA Guidelines, the means to achieve the goal of conserving energy include decreasing overall energy consumption, decreasing reliance on natural gas and oil, and increasing reliance on renewable energy sources. In particular, the proposed project would be considered "wasteful, inefficient, and unnecessary" if it were to violate state and federal energy standards and/or result in significant adverse impacts related to project energy requirements, energy inefficiencies, energy intensiveness of materials, cause significant impacts on local and regional energy supplies or generate requirements for additional capacity, fail to comply with existing energy standards, otherwise result in significant adverse impacts on energy resources, or conflict or create an inconsistency with applicable plan, policy, or regulation.

The proposed project includes the construction of 13,325 gross sf of commercial, retail, fast food, and fuel uses on the 3.92-acre project site. The development would include two phases: development of a 3,062 gross sf 7-Eleven building and a 2,263 gross sf Panda Express restaurant building during Phase 1, and a 5,000 gross sf future retail building and a 3,000 gross sf future fast food building during Phase 2. Both the Panda Express restaurant and the future fast food building would include drive-throughs. The amount of energy used at the project site would directly correlate to the size of the proposed buildings, the energy consumption of associated appliances and technology, and

outdoor lighting. Other major sources of proposed project energy consumption include fuel used by vehicle trips generated during project construction and operation, and fuel used by off-road construction vehicles during construction.

The following discussion provides calculated levels of energy use expected for the proposed project, based on commonly used modelling software (i.e. CalEEMod v.2016.3.2 and the California Air Resource Board's EMFAC2014). It should be noted that many of the assumptions provided by CalEEMod are conservative relative to the proposed project. Therefore, this discussion provides a conservative estimate of proposed project emissions.

Electricity and Natural Gas

Electricity and natural gas used by the proposed project would be used primarily to power on-site buildings. Total annual electricity (kWh) and natural gas (kBTU) usage associated with the operation of the proposed project are shown in Table 1, below (as provided by CalEEMod).

Table 1: Project Operational Natural Gas and Electricity Usage

Emissions ^(a)	Natural Gas (kBTU/year)	Electricity (kWh/year)
Convenience Market w/ Gas Pumps (7-Eleven)	18,126.9	13,806.9
Parking Lot	0.0	6,580.0
Fast Food Restaurant w/ Drive Thru (Panda Express)	468,605.0	64,516.2
Fast Food Restaurant w/ Drive Thru (2,000 sf future fast food)	420,419.0	57,882.1
Parking Lot	0.0	5,040.0
Strip Mall (3,000 sf future retail)	32,121.4	24,466.3
Strip Mall (3,000 sf future retail)	32,100.0	24,450.0
Parking Lot	0.0	7,140.0
Total	971,372.3	203,881.5

NOTE: (A) NUMBERS PROVIDED HERE MAY NOT ADD UP EXACTLY TO TOTAL DUE TO ROUNDING. SOURCE: CALEEMOD (V.2016.3.2).

According to Calico's *Appendix A: Calculation Details for CalEEMod*, CalEEMod uses the California Commercial End Use Survey (CEUS) database to develop energy intensity value for non-residential buildings. The energy use from residential land uses is calculated based on the Residential Appliance Saturation Survey (RASS). Similar to CEUS, this is a comprehensive energy use assessment that includes the end use for various climate zones in California.

As shown in Table 1, the project would us approximately 971,372.3 kBTU of natural gas per year and approximately 203,881.5 kWh of electricity per year.

On-Road Vehicles (Operation)

The proposed project would generate vehicle trips during its operational phase. According to the Traffic Impact Analysis Report prepared for the proposed project (JLB Traffic Engineering, Inc., 2018), the project would generate approximately 7,965 new daily vehicles trips. In order to calculate operational on-road vehicle energy usage and emissions, default trip lengths generated by CalEEMod were used, which are based on the project location and urbanization level parameters Stantec (the

Air Quality consultant) selected within CalEEMod (i.e. "Fresno County" project location and "Urban" setting, respectively). These values are provided by the individual districts or use a default average for the state, depending on the location of the proposed project (CAPCOA, 2017). Based on default factors provided by CalEEMod, the average distance per trip was conservatively calculated to be approximately 9.0 miles. Therefore, the proposed project would generate at total of approximately 33,076 average daily vehicle miles travelled (Average Daily VMT). Using fleet mix data provide by CalEEMod (v2016.3.2), and Year 2020 gasoline and diesel MPG (miles per gallon) factors for individual vehicle classes as provided by EMFAC2014, De Novo derived weighted MPG factors for operational on-road vehicles of approximately 26.0 MPG for gasoline and 15.5 MPG for diesel vehicles. With this information, De Novo calculated as a conservative estimate that the unmitigated proposed project would generate vehicle trips that would use a total of approximately 1,242 gallons of gasoline and 47 gallons of diesel fuel per day, on average, or 453,189 gallons of gasoline and 17,118 annual gallons of diesel fuel per year.

On-Road and Off-Road Vehicles (Construction)

The proposed project would also generate on-road vehicle trips during project construction (from construction workers and vendors). Estimates of vehicle fuel consumed were derived based on the assumed construction schedule, vehicle trip lengths and number of workers per construction phase as provided by CalEEMod, and Year 2020 gasoline MPG factors provided by EMFAC2014. For the purposes of simplicity, it was assumed that all vehicles used gasoline as a fuel source (as opposed to diesel fuel or alternative sources). Table 2, below, describes gasoline and diesel fuel used by on-road mobile sources during each phase of the construction schedule. As shown, the vast majority of onroad mobile vehicle fuel used during the construction of the proposed project would occur during the building construction phase. See Appendix B for a detailed calculation.

Off-road construction vehicles would use diesel fuel during the construction phase of the proposed project. A non-exhaustive list of off-road constructive vehicles expected to be used during the construction phase of the proposed project includes: cranes, forklifts, generator sets, tractors, excavators, and dozers. The proposed project would use diesel fuel for off-road construction vehicles (during the site preparation and grading phases of the proposed project).

Table 2: On-Road Mobile Fuel Generated by Project Construction Activities – By Phase

Construction Phase	# of Days	Total Daily Worker Trips ^(a)	Total Daily Vendor Trips ^(a)	Gallons of Gasoline Fuel ^(b)	Gallons of Diesel Fuel ^(b)
Site Preparation	6	48	-	123	-
Grading	12	48	-	246	-
Building Construction	600	145	63	37,182	40,820
Paving	30	75	-	962	-
Architectural Coating	30	28	-	359	-
Total	N/A	N/A	N/A	38,872	40,820

NOTE: (A) PROVIDED BY CALEEMOD. (B) SEE APPENDIX B FOR FURTHER DETAIL.

Source: CalEEMod (v.2016.3.2); EMFAC2014.

Other

Proposed project landscape maintenance activities would generally require the use of fossil fuel (i.e. gasoline) energy. For example, lawn mowers require the use of fuel for power. As an approximation, it is estimated that landscape care maintenance would require approximately two individuals one full day per week, or 839 hours per year (or 208.4 hours per year per landscaper). Assuming an average of approximately 0.5 gallons of gasoline used per person-hour, the proposed project would require

the use of approximately 420 gallons of gasoline per year to power landscape maintenance equipment. The energy used to power landscape maintenance equipment would not differ substantially from the energy required for landscape maintenance for similar project.

Conclusion

The proposed project would use energy resources for the operation of project buildings (electricity and natural gas), for on-road vehicle trips (e.g. gasoline and diesel fuel) generated by the proposed project, and from off-road construction activities associated with the proposed project (e.g. diesel fuel). Each of these activities would require the use of energy resources. The proposed project would be responsible for conserving energy, to the extent feasible, and relies heavily on reducing per capita energy consumption to achieve this goal, including through State-wide and local measures.

The proposed project would be in compliance with all applicable Federal, State, and local regulations regulating energy usage. For example, PG&E is responsible for the mix of energy resources used to provide electricity for its customers, and it is in the process of implementing the State-wide Renewable Portfolio Standard (RPS) to increase the proportion of renewable energy (e.g. solar and wind) within its energy portfolio. PG&E is expected to achieve at least a 33% mix of renewable energy resources by 2020, and 50% by 2030. Additionally, energy-saving regulations, including the latest State Title 24 building energy efficiency standards ("part 6"), would be applicable to the proposed project. Other State-wide measures, including those intended to improve the energy efficiency of the State-wide passenger and heavy-duty truck vehicle fleet (e.g. the Pavley Bill and the Low Carbon Fuel Standard), would improve vehicle fuel economies, thereby conserving gasoline and diesel fuel. These energy savings would continue to accrue over time.

As a result, the proposed project would not result in any significant adverse impacts related to project energy requirements, energy use inefficiencies, and/or the energy intensiveness of materials by amount and fuel type for each stage of the project including construction, operations, maintenance, and/or removal. PG&E, the electricity and natural gas provider to the site, maintains sufficient capacity to serve the proposed project. The proposed project would comply with all existing energy standards, and would not result in significant adverse impacts on energy resources. For these reasons, the proposed project would not be expected cause an inefficient, wasteful, or unnecessary use of energy resources nor cause a significant impact on any of the threshold as described by Appendix F of the CEQA Guidelines.

In conclusion, energy impacts would be considered less than significant.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
VII. GEOLOGY AND SOILS – Would the	e project:			
a) Directly or Indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:			Х	
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.			X	
ii) Strong seismic ground shaking?			X	
iii) Seismic-related ground failure, including liquefaction?			Х	
iv) Landslides?			Χ	
b) Result in substantial soil erosion or the loss of topsoil?			Χ	
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?			Х	
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?			Х	
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?			Х	
f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?	_		Х	

topography is relatively flat with no apparent unique or significant land forms such as vernal pools. Development of the property requires compliance with grading and drainage standards of the City of Fresno. A civil engineer or soils engineer registered in this state shall complete a Soils Investigation and Evaluation Report. The investigation will address the detail of the configuration, location, type of loading of the proposed structures and drainage plan. The report shall provide detailed recommendation for foundations, drainage, and other items. The preparation of the Soils Investigation and Evaluation Report is an existing standard.

Fresno has no known active earthquake faults and is not in any Alquist-Priolo Special Studies Zones. The immediate Fresno area has extremely low seismic activity levels, although shaking may be felt from earthquakes whose epicenters lie to the east, west, and south. Known major faults are over 50 miles distant and include the San Andreas Fault, Coalinga area blind thrust fault(s), and the Long Valley, Owens Valley, and White Wolf/Tehachapi fault systems. The most serious threat to Fresno from a major earthquake in the Eastern Sierra would be flooding that could be caused by damage to dams on the upper reaches of the San Joaquin River.

Fresno is classified by the State as being in a moderate seismic risk zone, Category "C" or "D," depending on the soils underlying the specific location being categorized and that location's proximity to the nearest known fault lines. All new structures are required to conform to current seismic protection standards in the California Building Code. Seismic upgrade/retrofit requirements are imposed on older structures by the City's Development and Resource Management Department as may be applicable to building modification and rehabilitation projects.

No adverse environmental effects related to topography, soils or geology are expected as a result of this project.

In conclusion, the proposed project would not result in any geology or soil environmental impacts beyond those analyzed in MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
VIII. GREENHOUSE GAS EMISSIONS -	- Would the proj	ect:		
a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?		X		
b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?		Х		

The State CEQA Guidelines indicate that a project would normally have a significant adverse green-house gas emission impact if the project would:

- Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment; or
- Conflict with an applicable plan, policy, or regulation adopted for the purpose of reduction the emissions of greenhouse gases.

Section 15064.4 of the *State CEQA Guidelines* states that: "A lead agency should make a good-faith effort, based to the extent possible on scientific and factual data, to describe, calculate or estimate the amount of greenhouse gas emissions resulting from a project." In performing that analysis, the lead agency has discretion to determine whether to use a model or methodology to quantify greenhouse gas emissions, or to rely on a qualitative analysis or performance-based standards. In making a determination as to the significance of potential impacts, the lead agency then considers the extent to which the project may increase or reduce greenhouse gas emissions as compared to the existing environmental setting, whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project, and the extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions.

Therefore, consistent with the *State CEQA Guidelines*, Section 15183.5, if a project is consistent with an adopted qualified Greenhouse Gas Reduction Strategy that meets the standards, it can be presumed that the project would not have significant greenhouse gas emission impacts.

The City of Fresno Greenhouse Gas Reduction Plan (GHG Reduction Plan), adopted in December 2014 meets the requirements for a Qualified Greenhouse Gas Reduction Strategy. Therefore, the proposed project's GHG emissions would not be considered a significant impact if the proposed Project would be consistent with the City's GHG Reduction Strategy.

The GHG Reduction Plan includes a strategy to reduce local community GHG emissions to 1990 levels by the year 2020, consistent with the state objectives set forth in the "Global Warming Solutions Act," otherwise known as AB 32. The GHG Reduction Plan includes relevant General Plan objectives and policies. Table 3 evaluates the proposed project's consistency with the applicable objectives and policies included in the GHG Reduction Plan.

Table 3: Consistency with Fresno Greenhouse Gas Reduction Plan

GHG Reduction Plan Strategy	Project Consistency with Strategy
Policy LU-2-a Infill Development and	Consistent. The project is located on vacant land
Redevelopment. Promote development of	within City limits where urban services are
vacant, underdeveloped, and redevelopable land	available.
uses within the City Limits where urban services	
are available by establishing and implementing	
supportive regulations and programs.	
Policy RC-11-a Waste Reduction Strategies.	Consistent. The project complies with Solid
	Waste Division's requirement to provide a
of all types of waste material in the city and	sufficient amount of recycling collection areas.
enhance waste and wastewater management	
practices to reduce natural resource	
consumption, including the following measure:	
Establish recycling collection and storage area	
standards for commercial and industrial facilities	
to size the recycling areas according to the	
anticipated types and amounts of recyclable	
material generated.	

As shown in Table 3, the proposed project would be consistent with the applicable strategies from the GHG Reduction Plan. Therefore, as demonstrated in Table 3 above, the proposed project would not conflict with plans, policies, or regulations adopted for the purpose of reducing GHG emissions. In addition, the proposed project would not result in a substantial increase in GHG emissions. Therefore, the proposed project would not generate greenhouse gas emissions that may have a significant effect on the environment.

The GHG Reduction Plan includes a strategy to reduce local community GHG emissions to 1990 levels by the year 2020, consistent with the state objectives set forth in the "Global Warming Solutions Act," otherwise known as AB 32. The GHG Reduction Plan includes relevant General Plan objectives and policies.

As shown in Table 3 above, the proposed project would be consistent with the applicable strategies from the GHG Reduction Plan. Therefore, as demonstrated in Table 3 above, the proposed project would not conflict with plans, policies, or regulations adopted for the purpose of reducing GHG emissions. Therefore, the proposed project would not conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs and impacts would be less than significant.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
IX. HAZARDS AND HAZARDOUS MAT	ERIAL – Would	the project:		
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?			Х	
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?			Х	
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?			Х	
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?			Х	

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
IX. HAZARDS AND HAZARDOUS MAT	ERIAL – Would	the project:		
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?			Х	
f) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?			Х	
g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?			Х	

There are no known existing hazardous material conditions on the property and the property is not included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5. The project itself will not generate or use hazardous materials in a manner outside health department requirements.

The subject property is not located within any wildland fire hazard zones.

The proposed project incorporates four access points, which will be utilized for purposes of emergency vehicle access.

As shown in historical aerial photographs available on Google Earth, an industrial building was previously located on the project site in 1998. The building was demolished by June 2009. Between 2009 and 2019, the site appears to be similar to the existing condition.

According to GeoTracker, one site is located in the immediate project vicinity. The Smith Tank Lines Site (Site # T0601900627) is a Leaking Underground Storage Tank (LUST) Cleanup Site with a cleanup status of Completed – Case Closed as of December 15, 2005. A leak at this site was reportedly discovered in August 1997. The leak was stopped in September 1997, and the Closure/No Further Action letter was submitted in December 2005. No other hazardous sites are documented in the immediate project vicinity.

The project area is not located in an FAA-designated Runway Protection Zone, Inner Safety Zone and Sideline Safety Zone according to review of the Downtown Fresno Chandler Airport and Yosemite International Airport Existing Safety Zones Maps. Based upon the goals of the proposed project, no potential interference with an adopted emergency response or evacuation plan has been identified.

In conclusion, the project will not result in any hazards and hazardous material impacts beyond those analyzed in MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
X. HYDROLOGY AND WATER QUALIT	Y – Would the p	roject:		
a) Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?		Х		
b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?			Х	
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or through the addition of impervious surfaces, in a manner which would:			X	
i) Result in a substantial erosion or siltation on- or off-site;		Х		
ii) Substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off- site;		Х		
iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or		Х		
iv) impede or redirect flood flows?			Χ	
d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?			Х	
e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?			Х	

Fresno is one of the largest cities in the United States still relying primarily on groundwater for its public water supply. Surface water treatment and distribution has been implemented in the northeastern part of the City, but the city is still subject to an EPA Sole Source Aquifer designation. While the aquifer underlying Fresno typically exceeds a depth of 300 feet and is capacious enough to provide adequate quantities of safe drinking water to the metropolitan area well into the twenty-first century, groundwater degradation, increasingly stringent water quality regulations, and a historic trend of high consumptive use of water on a per capita basis (some 250 gallons per day per capita), have resulted in a general decline in aquifer levels, increased cost to provide potable water, and localized water supply limitations.

This mitigated negative declaration prepared for the proposed project is tiered from MEIR SCH No. 2012111015) prepared for the Fresno General Plan (collectively, the "MEIR"), which contains measures to mitigate projects' individual and cumulative impacts to groundwater resources and to reverse the groundwater basin's overdraft conditions.

Fresno has attempted to address these issues through metering and revisions to the City's Urban Water Management Plan (UWMP). The Fresno Metropolitan Water Resource Management Plan, which has been adopted and the accompanying Final EIR (SCH #95022029) certified, is also under revision. The purpose of these management plans is to provide safe, adequate, and dependable water supplies in order to meet the future needs of the metropolitan area in an economical manner; protect groundwater quality from further degradation and overdraft; and, provide a plan of reasonably implementable measures and facilities. City water wells, pump stations, recharge facilities, water treatment and distribution systems have been expanded incrementally to mitigate increased water demands and respond to groundwater quality challenges.

The adverse groundwater conditions of limited supply and compromised quality have been well-documented by planning, environmental impact report and technical studies over the past 20 years including the MEIR No. 2012111015 for the Fresno General Plan, the MEIR 10130 for the 2025 Fresno General Plan, Final EIR No.10100, Final EIR No.10117 and Final EIR No. SCH 95022029 (Fresno Metropolitan Water Resource Management Plan), et al. These conditions include water quality degradation due to DBCP, arsenic, iron, and manganese concentrations; low water well yields; limited aquifer storage capacity and recharge capacity; and, intensive urban or semi-urban development occurring upgradient from the Fresno Metropolitan Area.

In response to the need for a comprehensive long-range water supply and distribution strategy, the Fresno General Plan recognizes the Kings Basin's Integrated Regional Water Management Plan, Fresno-Area Regional Groundwater Management Plan, and City of Fresno Metropolitan Water Resource Management Plan and cites the findings of the City of Fresno Urban Water Management Plan (UWMP). The purpose of these management plans is to provide safe, adequate, and dependable water supplies to meet the future needs of the Kings Basin regions and the Fresno-Clovis metropolitan area in an economical manner; protect groundwater quality from further degradation and overdraft; and, provide a plan of reasonably implementable measures and facilities.

The 2010 Urban Water Management Plan, Figure 4-3 (incorporated by reference) illustrates the City of Fresno's goals to achieve a 'water balance' between supply and demand while decreasing reliance upon and use of groundwater. To achieve these goals the City is implementing a host of strategies, including:

• Intentional groundwater recharge through reclamation at the City's groundwater recharge facility at Leaky Acres (located northwest of Fresno-Yosemite international Airport), refurbish

existing streams and canals to increase percolation, and recharge at Fresno Metropolitan Flood Control District's (FMFCD) storm water basins;

- Increase use of existing surface water entitlements from the Kings River, United States Bureau
 of Reclamation and Fresno Irrigation District for treatment at the Northeast Storm Water
 Treatment Facility (NESWTF) and construct a new Southeast Storm Water Treatment Facility
 (SESWTF); and
- Recycle wastewater at the Fresno-Clovis Regional Wastewater Reclamation Facility (RWRF) for treatment and re-use for irrigation, and to percolation ponds for groundwater recharge. Further actions include the General Plan, Policy RC-6-d to prepare, adopt and implement a City of Fresno Recycled Water Master Plan.

The City has indicated that groundwater wells, pump stations, recharge facilities, water treatment and distribution systems shall be expanded incrementally to mitigate increased water demands. One of the primary objectives of Fresno's future water supply plans detailed in Fresno's current UWMP is to balance groundwater operations through a host of strategies. Through careful planning, Fresno has designed a comprehensive plan to accomplish this objective by increasing surface water supplies and surface water treatment facilities, intentional recharge, and conservation, thereby reducing groundwater pumping. The City continually monitors impacts of land use changes and development project proposals on water supply facilities by assigning fixed demand allocations to each parcel by land use as currently zoned or proposed to be rezoned.

Until 2004, groundwater was the sole source of water for the City. In June 2004, a \$32 million Surface Water Treatment Facility ("SWTF") began providing Fresno with water treated to drinking water standards. A second surface water treatment facility is operational in southeast Fresno to meet demands anticipated by the growth implicit in the 2025 Fresno General Plan. Surface water is used to replace lost groundwater through Fresno's artificial recharge program at the City-owned Leaky Acres and smaller facilities in Southeast Fresno. Fresno holds entitlements to surface water from Millerton Lake and Pine Flat Reservoir. In 2006, Fresno renewed its contract with the United States Bureau of Reclamation, through the year 2045, which entitles the City to 60,000 acre-feet per year of Class 1 water. This water supply has further increased the reliability of Fresno's water supply.

Also, in 2006, Fresno updated its Metropolitan Water Resources Management Plan designed to ensure the Fresno metro area has a reliable water supply through 2050. The plan implements a conjunctive use program, combining groundwater, treated surface water, artificial recharge and an enhanced water conservation program.

In the near future, groundwater will continue to be an important part of the City's supply but will not be relied upon as heavily as has historically been the case. The City is planning to rely on expanding their delivery and treatment of surface water supplies and groundwater recharge activities.

In addition, the General Plan policies require the City to maintain a comprehensive conservation program to help reduce per capita water usage, and includes conservation programs such as landscaping standards for drought tolerance, irrigation control devices, leak detection and retrofits, water audits, public education and implementing US Bureau of Reclamation Best Management Practices for water conservation to maintain surface water entitlements.

Implementation of the Fresno General Plan policies, the Kings Basin Integrated Regional Water Management Plan, City of Fresno UWMP, Fresno-Area Regional Groundwater Management Plan, and City of Fresno Metropolitan Water Resource Management Plan and the applicable mitigation

measures of approved environmental review documents will address the issues of providing an adequate, reliable, and sustainable water supply for the project's urban domestic and public safety consumptive purposes. The recently adopted 2015 UWMP analyzed the Fresno General Plans land use capacity.

The project site is mostly flat and the project would not substantially alter the existing drainage pattern of the site or area. The project site does not have a stream or river. The project would not result in substantial erosion or siltation on- or off-site, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site. The storm drainage plan will be supported by engineering calculations to ensure that the project does not create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff. The project would not impede or redirect flood flows. :The project site is not in a location that is prone to flood hazard, tsunami, or seiche zones, and is not at risk of release of pollutants due to project inundation.

The applicant will be required to comply with all requirements of the City of Fresno Department of Public Utilities that will reduce the project's water impacts to less than significant. When development permits are issued, the subject site will be required to pay drainage fees pursuant to the Drainage Fee Ordinance.

In conclusion, with MEIR mitigation measures incorporated, the project will not result in any hydrology or water quality impacts beyond those analyzed in MEIR SCH No. 2012111015.

Mitigation Measures

1. The proposed project shall implement and incorporate, as applicable, the hydrology related mitigation measures as identified in the attached MEIR SCH No. 2012111015 Fresno General Plan Mitigation Monitoring Checklist dated March 2019.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XI. LAND USE AND PLANNING – Would	d the project:			
a) Physically divide an established community?			Х	
b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?			Х	

The subject property includes a request for a Condition Use Permit. Conditional Use Permits are required for Drive-Through Facilities and Alcohol Sales within the Heavy Industrial zoning designation. The remaining proposed uses are permitted by-right. The proposed project site is designated and zoned for Heavy Industrial uses. Upon approval, the proposed project would not conflict with any land use plan, policy or regulation given that the Conditional Use Permit would facilitate consistency for the 13,325 sf of commercial, retail, fast food, and fuel uses. The project would not require a rezone or General Plan amendment. The Heavy Industrial land use designation

accommodates the broadest range of industrial uses including manufacturing, assembly, wholesaling, distribution, and storage activities that are essential to the development of a balanced economic base. Small-scale commercial services and ancillary office uses are also permitted. The maximum FAR is 1.5. The proposed small-scale commercial and ancillary uses are allowed within this land use designation, and the project does not exceed the maximum FAR.

Fresno General Plan Goals, Objectives and Policies

As proposed, the project will be consistent with the following Fresno General Plan goals:

- Increase opportunity, economic development, business, and job creation.
- Make full use of existing infrastructure, and investment in improvements to increase competitiveness and promote economic growth.
- Promote orderly land use development in pace with public facilities and services needed to serve development.
- Provide for a diversity of districts, neighborhoods, housing types (including affordable housing), residential densities, job opportunities, recreation, open space, and educational venues that appeal to a broad range of people throughout the City.

These Goals contribute to the establishment of a comprehensive city-wide land use planning strategy to meet economic development objectives, achieve efficient and equitable use of resources and infrastructure, and create an attractive living environment in accordance with Objective LU-1 of the Fresno General Plan.

Policy UF-1-a promotes new development within the existing City limits. The project site is within the existing City limits.

Likewise, Objective LU-6 of the General Plan aims to retain and enhance existing commercial areas to strengthen Fresno's economic base and site new office, retail, and lodging use districts to serve neighborhoods and regional visitors. Policy LU-6-6 aims to direct highway-oriented and auto-serving commercial uses to locations that are compatible with the Urban Form policies of the General Plan. This policy also ensures that adequate buffering measures are implemented for adjacent residential uses, noise, glare, odors, and dust. Because the site is adjacent to a SR 99 off-ramp, the proposed auto-centric uses are in an appropriate location. Additionally, the project site is not located near any residential uses.

This project supports the above-mentioned goals and policies in that the intensity of the proposed development conforms to the applicable land use designation of the Fresno General Plan.

The project will not conflict with any conservation plans since it is not located within any conservation plan areas. No habitat conservation plans or natural community conservation plans in the region pertain to the natural resources that exist on the subject site or in its immediate vicinity. Therefore, there would be no impacts.

In conclusion, the proposed project would not result in any land use and planning environmental impacts beyond those analyzed in MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XII. MINERAL RESOURCES – Would the	e project:			
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?			X	
b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?			X	

The subject site is not located in an area designated for mineral resource preservation or recovery, therefore, the project will not result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state. The subject site is not delineated on a local general plan, specific plan or other land use plan as a locally-important mineral resource recovery site; therefore, it will not result in the loss of availability of a locally-important mineral resource.

In conclusion, the proposed project would not result in any mineral resource environmental impacts beyond those analyzed in MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XIII. NOISE – Would the project result in:				
a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			X	
b) Generation of excessive groundborne vibration or groundborne noise levels?			X	

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XIII. NOISE – Would the project result in:				
c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?			Х	

Generally, the three primary sources of substantial noise that affect the City of Fresno and its residents are transportation-related and consist of major streets and regional highways; airport operations at the Fresno Yosemite International, the Fresno-Chandler Downtown, and the Sierra Sky Park Airports; and railroad operations along the BNSF Railway and the Union Pacific Railroad lines.

In developed areas of the community, noise conflicts often occur when a noise sensitive land use is located adjacent or in proximity to a noise generator. Noise in these situations frequently stems from on-site operations, use of outdoor equipment, uses where large numbers of persons assemble, and vehicular traffic. Some land uses, such as residential dwellings hospitals, office buildings and schools, are considered noise sensitive receptors and involve land uses associated with indoor and/or outdoor activities that may be subject to stress and/or significant interference from noise.

Stationary noise sources can also have an effect on the population, and unlike mobile, transportation-related noise sources, these sources generally have a more permanent and consistent impact on people. These stationary noise sources involve a wide spectrum of uses and activities, including various industrial uses, commercial operations, agricultural production, school playgrounds, high school football games, HVAC units, generators, lawn maintenance equipment and swimming pool pumps.

Potential noise sources at the project site would occur primarily from roadway noise on the project area roadways and the outdoor parking areas.

The City of Fresno Noise Element of the Fresno General Plan establishes a land use compatibility criterion of 60dB DNL for exterior noise levels in outdoor areas of noise-sensitive land uses. The intent of the exterior noise level requirement is to provide an acceptable noise environment for outdoor activities and recreation. However, the project site is not located in the vicinity of existing sensitive land uses, and the project doesn't propose sensitive land uses. Furthermore, the Noise Element also requires that interior noise levels attributable to exterior noise sources not exceed 45 dB DNL. The intent of the interior noise level standard is to provide an acceptable noise environment for indoor communication and sleep.

For stationary noise sources, the noise element establishes noise compatibility criteria in terms of the exterior hourly equivalent sound level (L_{eq}) and maximum sound level (L_{max}). The standards are more restrictive during the nighttime hours, defined as 10:00 p.m. to 7:00 a.m. The standards may be adjusted upward (less restrictive) if the existing ambient noise level without the source of interest

already exceeds these standards. The Noise Element standards for stationary noise sources are: (1) 50 dBA L_{eq} for the daytime and 45 dBA L_{eq} for the nighttime hourly equivalent sound levels; and, (2) 70 dBA L_{max} for the daytime and 65 dBA L_{max} for the nighttime maximum sound levels.

Noise created by new proposed stationary noise sources or existing stationary noise sources which undergo modification that may increase noise levels shall be mitigated so as not to exceed the noise level standards of Table 9 (Table 5.11-8 of the MEIR) at noise sensitive land uses. If the existing ambient noise levels equal or exceed these levels, mitigation is required to limit noise to the ambient noise level plus 5 dB.

The project site is currently vacant. Therefore, it is reasonable to assume that the proposed project will result in an increase in temporary and/or periodic ambient noise levels on the subject property above existing levels. However, these noise levels will not exceed those generated by adjacent existing or planned land uses.

Pursuant to Policy H-1-b of the Fresno General Plan, for purposes of City analyses of noise impacts, and for determining appropriate noise mitigation, a significant increase in ambient noise levels is assumed if the project causes ambient noise levels to exceed the following: (1) The ambient noise level is less than 60 db Ldn and the project increase noise levels by 5 dB or more; (2) The ambient noise level is 60-65 dB Ldn and the project increases noise levels by 3 dB or more; or, (3) The ambient noise level is greater than 65 dB Ldn and the project increases noise levels by 1.5 dB or more.

Short-term Noise Impacts

The construction of a project involves both short-term, construction related noise, and long-term noise potentially generated by increases in area traffic, nearby stationary sources, or other transportation sources. The Fresno Municipal Code (FMC) allows for construction noise in excess of standards if it complies with the section below (Chapter 10, Article 1, Section 10-109 – Exemptions). It states that the provisions of Article 1 – Noise Regulations of the FMC shall not apply to:

Construction, repair or remodeling work accomplished pursuant to a building, electrical, plumbing, mechanical, or other construction permit issued by the city or other governmental agency, or to site preparation and grading, provided such work takes place between the hours of 7:00 a.m. and 10:00 p.m. on any day except Sunday.

Thus, construction activity would be exempt from City of Fresno noise regulations, as long as such activity is conducted pursuant to an applicable construction permit and occurs between 7:00 a.m. and 10:00 p.m., excluding Sunday. Therefore, short-term construction impacts associated with the exposure of persons to or the generation of noise levels in excess of standards established in the general plan or noise ordinance or applicable standards of other agencies would be less than significant.

Long Term Noise Impacts

The proposed project includes future commercial, retail, fast food, and fuel uses. The immediate vicinity consists of light industrial and heavy industrial uses, which produce noise levels which are either exceed or be similar to noise levels produced by the proposed project. Although the project will create additional activity in the area, the project will be required to comply with all noise policies from the Fresno General Plan and noise ordinance from the FMC.

Conclusion

Although the project will create additional activity in the area, the project will be required to comply with all noise policies and mitigation measures identified within the Fresno General Plan and MEIR as well as the noise ordinance of the Fresno Municipal Code.

In conclusion, the proposed project would not result in any noise environmental impacts beyond those analyzed in MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XIV. POPULATION AND HOUSING – W	ould the project	:		
a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?			Х	
b) Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?				Х

The proposed project will not induce substantial population growth in this area. The surrounding area is mostly developed or will be developed with industrial uses. The intensity of the proposed project was included in the Fresno General Plan. The proposed project includes 13,325 sf of commercial, retail, fast food, and fuel uses; the impact would be less than significant since the surrounding uses are also industrial and given that development is occurring at a scale and scope designated by the Fresno General Plan.

The proposed project will not displace any existing housing. The project will not result in displacement of any persons as there is no development on the subject property.

In conclusion, the proposed project would not result in any population and housing environmental impacts beyond those analyzed in MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact			
XV. PUBLIC SERVICES – Would the project:							
a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:							
Fire protection?		X					
Police protection?		X					
Schools?			Х				
Parks?		Х					
Drainage and flood control??		Х					
Other public facilities?			Χ				

The subject property is located approximately 1.4 air miles (or 2.0 road miles) southeast from Fire Station 7.

The City of Fresno Fire Department operates its facilities under the guidance set by the National Fire Protection Association in NFPA 1710, the Standard for the Organization and Deployment of Fire Suppression Operations, Emergency Medical Operations, and Special Operation to the Public by Career Fire Departments. NFPA 1710 sets standards for turnout time, travel time, and total response time for fire and emergency medical incidents, as well as other standards for operation and fire service. The Fire Department has established the objectives set forth in NFPA 1710 as department objectives to ensure the public health, safety, and welfare.

Demand for fire service generated by the project is within planned services levels of the Fire Department and the applicant will pay any required impact fees at the time building permits are obtained.

According to the Fresno General Plan MEIR, development impact fees are currently collected for the provision of capital facilities for fire facilities that will provide for future facilities as the City's population increases. Recognizing that there would be an increased demand for fire and emergency medical response, the General Plan Update includes several policies to support the activities of the Fresno Fire Department. The policies and objectives from the General Plan will ensure that the proposed project does not significantly affect fire protection.

Additional fire service requirements for development of the proposed project will include installation of public fire hydrants and the provision of adequate fire flows per Public Works Standards, with two sources water; installation of fire sprinklers within future commercial buildings; and the provision of two means of emergency access during all phases of construction. Review for compliance with fire and life safety requirements for the interior of proposed buildings and the intended use are reviewed by both the Fire Department and the Building and Safety Services Section of the Development and Resource Management Department when a submittal for building plan review is made as required by the California Building Code.

City police protection services are also available to serve the proposed project with no new facilities required for police protection. Development of the property requires compliance with grading and drainage standards of the City of Fresno.

The proposed project does not include uses that would significantly increase the use of park and recreation facilities in the area. Demand for parks generated by the project is within planned services levels of the City of Fresno Parks and Community Services Department and the applicant will pay any required impact fees at the time building permits are obtained.

Similarly, the proposed commercial, retail, fast food, and fuel uses would not impact the District's student classroom capacity. The developer will pay appropriate school fees at time of building permits.

The Department of Public Utilities (DPU) has determined that adequate sanitary sewer and water services are available to serve the project site subject to implementation of the Fresno General Plan policies and the mitigation measures of the related MEIR; and, the construction and installation of public facilities and infrastructure in accordance with Department of Public Works standards, specifications and policies.

For sanitary sewer service these infrastructure improvements and facilities include typical requirements for construction and extension of sanitary sewer mains and branches within the interior of the future proposed commercial, retail, fast food, and fuel development. The proposed project will also be required to provide payment of sewer connection charges.

Implementation of the Fresno General Plan policies and the mitigation measures of the associated MEIR, along with the implementation of the Water Resources Management Plan, would ensure drainage impacts are less than significant. Installation of these services with meters to the proposed buildings and payment of applicable Water Capacity Charges will provide an adequate, reliable, and sustainable water supply for the project's urban domestic and public safety consumptive purposes.

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM), the subject site is not located within a flood prone or hazard area, necessitating appropriate floodplain management action. The project site is mostly flat and the project would not substantially alter the existing drainage pattern of the site or area. The project site does not have a stream or river. The project would not result in substantial erosion or siltation on- or off-site, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site. The storm drainage plan will be supported by engineering calculations to ensure that the project does not create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff.

Portions of the subject property may be adequately served with permanent drainage service through existing Master Plan facilities or required Master Plan facilities to be developed in conjunction with the

proposed project. The developer will be required to provide improvements which will convey surface drainage to Master Plan inlets and which will provide a path for major storm conveyance as well as construct facilities for temporary ponding purposes.

In conclusion, with implementation of the MEIR Public Service Mitigation measures, the project will not result in any public service impacts beyond those analyzed in MEIR SCH No. 2012111015.

Mitigation Measures

1. The proposed project shall implement and incorporate, as applicable, the Public Service related mitigation measures as identified in the attached MEIR SCH No. 2012111015 Fresno General Plan Mitigation Monitoring Checklist dated February 8, 2019.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XVI. RECREATION - Would the project:				
a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?			Х	
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?			Х	

The proposed project will not result in the physical deterioration of existing parks or recreational facilities. Development of the project would not require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment.

Demand for parks generated by the project would be minimal and is within planned services levels of the City of Fresno Parks and Community Services Department. The applicant will pay any required impact fees at the time building permits are obtained or receive credits for construction as may be memorialized within a development agreement.

In conclusion, the proposed project would not result in any recreation environmental impacts beyond those analyzed in MEIR SCH No. 2012111015.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XVII. TRANSPORTATION – Would the p	oroject:			
a) Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?		X		
b) Conflict or be inconsistent with CEQA Guidelines § 15064.3, subdivision (b)?			X	
c) Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?			X	
d) Result in inadequate emergency access?			Х	

According to the Traffic Impact Analysis prepared for the project, the proposed project is located within Traffic Impact Zone IV. The Traffic Impact Analysis is included as Appendix C.

In accordance with Policy MT-2-i of the Fresno General Plan, when a project includes a General Plan amendment that changes the General Plan Land Use Designation, and/or when a development project is projected to generate 200 or more peak hour new vehicle trips, a Transportation Impact Study (TIS) is required in order to assess the impacts of new development projects on existing and planned streets.

The proposed project would generate 200 or more peak hour new vehicle trips. Therefore, a Traffic Impact Analysis was prepared for the proposed project. The City Traffic Engineer reviewed and approved the Traffic Impact Analysis (JLB Traffic Engineering, Inc.) provided by the applicant dated February 16, 2018. According to the Traffic Impact Analysis, the project would generate a maximum of 7,965 daily trips, 644 AM peak hour trips, and 536 PM peak hour trips.

At present, all study intersections operate at an acceptable level of service (LOS) during the AM and PM peak periods. Under the Existing Plus Project condition, the intersection of North Avenue and SR 99 Southbound Off-Ramp is projected to exceed its LOS threshold during the AM peak period. To improve the LOS at this intersection, it is recommended that the following improvements be implemented:

- Add a southbound left-turn lane
- Modify the southbound left-through lane to a through lane
- Lengthen the short southbound flared right-turn lane to create a standard length right turn lane
- Signalize the intersection with protected left-turn phasing in the northbound and southbound directions and split phasing in the eastbound and westbound directions

Under the Near Term Plus Project condition, the intersections of North Avenue and Orange Avenue, North Avenue and SR 99 Southbound Off-Ramp, and North Avenue and Cedar Avenue are projected to exceed their respective LOS threshold during one or both peak periods. To improve the LOS at each of the intersections projected to exceed its LOS threshold, it is recommended that the following improvements be implemented:

- North Avenue and Orange Avenue:
 - o Implement the improvements per the approved City of Fresno Street improvement plans as prepared for the Amazon Project.
- North Avenue and SR 99 Southbound Off-Ramp:
 - Add a second eastbound through lane
 - Add a westbound left-turn lane
 - Modify the westbound left-through lane to a through lane
 - Add southbound dual left-turn lanes
 - Modify the southbound left-through lane to a through lane
 - Lengthen the southbound flared right-turn lane to create a standard length right-turn lane
 - Signalize the intersection with protected left-turn phasing in all directions
- North Avenue and SR 99 Northbound On-Ramp (improvements needed to improve queuing):
 - Add eastbound dual left-turn lanes
 - Modify the eastbound left-through lane to a through lane
 - Add a second eastbound through lane
 - Add a second westbound through lane
 - Signalize the intersection with protected left-turn phasing in all directions
- North Avenue and Cedar Avenue:
 - Convert the eastbound right-turn lane to a through-right lane
 - Add a second westbound through lane
 - o Add a second northbound left-turn lane
 - Modify the traffic signal to accommodate the added lane geometrics

Under the Cumulative Year 2035 No Project condition, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the following improvements be implemented:

- North Avenue at Chestnut Avenue:
 - Add an eastbound left-turn lane
 - Change the eastbound left-through-right lane to a through lane
 - Add an eastbound right-turn lane
 - o Add a westbound left-turn lane
 - o Change the westbound left-through-right lane to a through lane
 - Add a westbound right-turn lane
 - o Modify the traffic signal to accommodate the added lane geometrics

Under the Cumulative Year 2035 Plus Project condition, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the same improvements presented in the Cumulative Year 2035 No Project condition be implemented.

Payment of the pro-rata fair share would satisfy the project's mitigation measure requirements.

Additionally, a review of the existing project site property lines and the project driveways to be constructed indicate that the proposed access driveways are located at points that minimize traffic operational impacts to the existing roadway network.

The City Engineer has reviewed the proposed project, the Traffic Impact Analysis, and potential traffic related impacts for the proposed project and has determined that the streets adjacent to and near the subject site will be able to accommodate the quantity and kind of traffic which may be potentially generated subject to the requirements identified within the Traffic Impact Analysis dated January 12, 2018 and the Conditions of Approval dated November 7, 2018. These requirements generally include: (1) Dedication for sidewalks, public streets and right-of-way; (2) Street improvements, (including, but not limited to, construction of concrete curbs, gutters, pavement, underground street lighting systems); and, (3) Payment of applicable impact fees (including, but not limited to, the Traffic Signal Mitigation Impact [TSMI] Fee, Fresno Major Street Impact [FMSI] Fee, and the Regional Transportation Mitigation Fee [RTMF]).

The impacts to the facilities indicated in prior discussion are covered by the fee programs mentioned above, including the TSMI Fee¹, FMSI Fee², and the RTMF³.

A review of the existing project site property lines and the project driveways to be constructed indicate that the proposed access driveways are located at points that minimize traffic operational impacts to the existing roadway network. The design of the proposed development has been evaluated and determined to be consistent with respect to compliance with City of Fresno standards, specification and policies.

The project is not located near an airport; therefore, it will not change air traffic levels. The proposed streets will not create hazards or conflict with emergency access. With the required mitigation measures, the project will not conflict with adopted policies or plans regarding public transit, bicycle or pedestrian facilities because said features are incorporated into the conditions of approval for the project.

In conclusion, with implementation of the project specific mitigation measures related to Transportation and Circulation incorporated herein below, the project will not result in any transportation and circulation impacts beyond those analyzed in MEIR SCH No. 2012111015.

Mitigation Measures

1. The proposed project shall implement and incorporate the transportation and circulation related mitigation measure as identified in the attached Project Specific Mitigation Monitoring Checklist dated March 2019.

¹ <u>https://www.fresno.gov/publicworks/wp-content/uploads/sites/17/2016/09/TSMI2016FeeUpdate.pdf.</u> Accessed April 17, 2019.

² https://fresno.legistar.com/View.ashx?M=F&ID=4817606&GUID=5ED59933-2A30-4835-AD65-AA72A2FE781D. Accessed April 17, 2019.

³ https://www.fresnocog.org/wp-content/uploads/files/C%20Exp%20Plan_Final%20for%20Printing%20062206.pdf. Accessed April 17, 2019.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XVII. TRIBAL CULTURAL RESOURCES	3 – Would the pr	oject:		
a) Cause a substantial adverse change in the significance of a tribal cultural				
resource, defined in PRC section 21074				
as either a site, feature, place, cultural				
landscape that is geographically			X	
defined in terms of the size and scope				
of the landscape, sacred place, or				
object with cultural value to a California Native American tribe, and that is:				
i) Listed or eligible for listing in the				
California Register of Historical				
Resources, or in a local register of			X	
historical resources as defined in PRC				
section 5020.1(k), or,				
ii) A resource determined by the lead				
agency, in its discretion and supported				
by substantial evi-dence, to be				
significant pursuant to criteria set forth in subdivision (c) of PRC section				
5024.1. In applying the criteria set forth			X	
in subdivision (c) of PRC section				
5024.1, the lead agency shall consider				
the significance of the resource to a				
California Native American tribe.				

The State requires lead agencies to consider the potential effects of proposed projects and consult with California Native American tribes during the local planning process for the purpose of protecting Traditional Tribal Cultural Resources through the California Environmental Quality Act (CEQA) Guidelines. Pursuant to PRC Section 21080.3.1, the lead agency shall begin consultation with the California Native American tribe that is traditionally and culturally affiliated with the geographical area of the proposed project. Such significant cultural resources are either sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a tribe which is either on or eligible for inclusion in the California Historic Register or local historic register, or, the lead agency, at its discretion, and support by substantial evidence, choose to treat the resources as a Tribal Cultural Resources (PRC Section 21074(a)(1-2)).

Additional information may also be available from the California Native American Heritage Commission's Sacred Lands File per PRC Section 5097.96 and the California Historical Resources Information System administered by the California Office of Historic Preservation. Please also note that PRC Section 21082.3(c) contains provisions specific to confidentiality.

Pursuant to Assembly Bill 52 (AB 52), the Table Mountain Rancheria Tribe and the Dumna Wo Wah were invited to consult under AB 52. The City of Fresno mailed notices of the proposed project to each of these tribes on October 26, 2018 which included the required 30-day time period for tribes to

request consultation.

Under invitations to consult under AB 52, one of the two contacted tribes responded. The Table Mountain Rancheria of California declined consultation via mail on January 8, 2019.

The site is currently vacant and has been previously disturbed and developed. If any artifacts are inadvertently discovered during ground-disturbing activities, existing federal, State, and local laws and regulations as well as the mitigation measures of the Fresno General Plan MEIR will require construction activities to cease until such artifacts are properly examined and determined not to be of significance by a qualified cultural resources professional.

In conclusion, with implementation of the MEIR Cultural Resource Mitigation measures, impacts related to tribal cultural resources would be less than significant.

Mitigation Measures

1. The proposed project shall implement and incorporate, as applicable, the cultural resources related mitigation measures as identified in the attached MEIR SCH No. 2012111015 Fresno General Plan Mitigation Monitoring Checklist dated March 2019.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XIX. UTILITIES AND SERVICE SYSTEM	IS – Would the	oroject:		
a) Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effect?			X	
b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?			Х	
c) Result in a determination by the waste water treatment provider, which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?			X	

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XIX. UTILITIES AND SERVICE SYSTEM	IS – Would the	project:		
d) Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?			Х	
e) Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?			Х	

The proposed project will require construction of new infrastructure to connect to the existing utility infrastructure. This will include water, wastewater, and storm water drainage connections. Additionally, the project will include connections for electric power, natural gas, and telecommunications facilities. The installation of this infrastructure will not require any major upsizing or other offsite construction activities that would cause a significant impact. The new infrastructure would be connected to existing infrastructure that is adjacent to the project site.

As discussed uny the Hydrology and Water Quality section of this Initial Study, the City has adequate water supply and the applicant will be required to comply with all requirements of the City of Fresno Department of Public Utilities to reduce the project's water impacts to less than significant.

The proposed project will not result in a determination by the waste water treatment provider that it has inadequate capacity to serve the project's projected demand in addition to the provider's existing commitments.

Impacts to storm drainage facilities have been previously discussed under the Hydrology and Water Quality section included within this analysis herein above. While the proposed project will result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction such facilities will not cause significant environmental effects.

The proposed project would be subject to the payment of any applicable connection charges and/or fees and extension of services in a manner which is compliant with the Department of Public Utilities standards, specifications, and policies.

Sanitary sewer and water service delivery is also subject to payment of applicable connection charges and/or fees; compliance with the Department of Public Utilities standards, specifications, and policies; the rules and regulations of the California Public Utilities Commission and California Health Services; and, implementation of the City-wide program for the completion of incremental expansions to facilities for planned water supply, treatment, and storage.

The project site will be serviced by solid waste division, which has adequate capacity to serve the project.

In conclusion, with MEIR mitigation measures incorporated, the proposed project would not result in any utility and service system environmental impacts beyond those analyzed in the MEIR SCH No. 2012111015.

Mitigation Measures

1. The proposed project shall implement and incorporate, as applicable, the utilities related mitigation measures as identified in the attached MEIR SCH No. 2012111015 Fresno General Plan Mitigation Monitoring Checklist dated March 2019.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XX. WILDFIRE – If located in or near so hazard severity zones, would the project:	•	ty areas or lands o	classified as ver	y high fire
a) Substantially impair an adopted emergency response plan or emergency evacuation plan?			Х	
b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?			X	
c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?			X	
d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?			Х	

There are no State Responsibility Areas (SRAs) within the vicinity of the project site. The project site is not categorized as a "Very High" Fire Hazard Severity Zone (FHSZ) by CalFire. Although this CEQA topic only applies to areas within an SRA or Very High FHSZ, out of an abundance of caution, these checklist questions are analyzed below.

The project site will connect to an existing network of City streets. The proposed circulation improvements include four access points, all of which would be available during an emergency. The

project would not impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan.

The risk of wildfire is related to a variety of parameters, including fuel loading (vegetation), fire weather (winds, temperatures, humidity levels and fuel moisture contents) and topography (degree of slope). Steep slopes contribute to fire hazard by intensifying the effects of wind and making fire suppression difficult. Fuels such as grass are highly flammable because they have a high surface area to mass ratio and require less heat to reach the ignition point. The project site is located in an area that is predominately agricultural and urban, which is not considered at a significant risk of wildlife.

The project includes development of infrastructure (water, sewer, and storm drainage) required to support the proposed commercial, retail, fast food, and fuel uses. The project site is surrounded by existing and future urban development. The project would not impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan. The project would not require the installation or maintenance of infrastructure that may exacerbate fire risk.

The proposed project would require the installation of storm drainage infrastructure to ensure that storm waters properly drain from the project site and does not result in downstream flooding or major drainage changes. The proposed storm drainage plan includes an engineered network of storm drain lines and landscaped bioswales. The storm drainage plan was designed and engineered to ensure proper construction of storm drainage infrastructure to control runoff and prevent flooding, erosion, and sedimentation.

Runoff from the project site currently flows to the existing City storm drains located in E. North Avenue and S. Orange Avenue. Upon development of the site, stormwater would flow to the on-site landscaped bioswales and/or the existing storm drains in the adjacent roadways. Additionally, the project site is located within FEMA Zone X (un-shaded), indicating that the site is located outside of the 100-year flood hazard zone. Further, because the site is essentially flat and located in an existing urbanized area of the City, downstream landslides would not occur.

Landslides include rockfalls, deep slope failure, and shallow slope failure. Factors such as the geological conditions, drainage, slope, vegetation, and others directly affect the potential for landslides. One of the most common causes of landslides is construction activity that is associated with road building (i.e. cut and fill). The project site is relatively flat; therefore, the potential for a landslide in the project site is essentially non-existent.

In conclusion, the proposed project would not result in any wildfire environmental impacts.

ENVIRONMENTAL ISSUES	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
XIX. MANDATORY FINDINGS OF SIGN	IFICANCE			
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?			X	
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?			X	
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?			Х	

The proposed project is considered to be proposed at a size and scope which is neither a direct or indirect detriment to the quality of the environment through reductions in habitat, populations, or examples of local history (through either individual or cumulative impacts).

The proposed project does not have the potential to degrade the quality of the environment or reduce the habitat of wildlife species and will not threaten plant communities or endanger any floral or faunal species. Furthermore the project has no potential to eliminate important examples of major periods in history.

In summary, given the mitigation measures required of the proposed project and the analysis detailed in the preceding Initial Study, the proposed project:

- Does not have environmental impacts which will cause substantial adverse effects on human beings, either directly nor indirectly.
- Does not have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish/wildlife or native plant species (or cause their population to drop below self-

sustaining levels), does not threaten to eliminate a native plant or animal community, and does not threaten or restrict the range of a rare or endangered plant or animal.

- Does not eliminate important examples of elements of California history or prehistory.
- Does not have impacts which would be cumulatively considerable even though individually limited.

Therefore, there are no mandatory findings of significance and preparation of an Environmental Impact Report is not warranted for this project.

MEIR Mitigation Measure Monitoring Checklist for EA No. P18-02233 March 20

INCORPORATING MEASURES FROM THE MASTER ENVIRONMENTAL IMPACT REPORT (MEIR) CERTIFIED FOR THE CITY OF FRESNO GENERAL PLAN UPDATE (SCH No. 2012111015)

This mitigation measure monitoring and reporting checklist was prepared pursuant to California Environmental Quality Act (CEQA) Guidelines Section 15097 and Section 21081.6 of the Public Resources Code (PRC). It was certified as part of the Fresno City Council's approval of the MEIR for the Fresno General Plan update (Fresno City Council Resolution 2014-225, adopted December 18, 2014).

Letter designations to the right of each MEIR mitigation measure listed in this Exhibit note how the mitigation measure relates to the environmental assessment of the above-listed project, according to the key found at right and at the bottoms of the following pages:

- A Incorporated into Project
- **B** Mitigated
- **C** Mitigation in Progress
- D Responsible Agency Contacted
- **E** Part of City-wide Program
- F Not Applicable

The timing of implementing each mitigation measure is identified in in the checklist, as well as identifies the entity responsible for verifying that the mitigation measures applied to a project are performed. Project applicants are responsible for providing evidence that mitigation measures are implemented. As lead agency, the City of Fresno is responsible for verifying that mitigation is performed/completed.

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Aesthetics:								
AES-1. Lighting systems for street and parking areas shall include shields to direct light to the roadway surfaces and parking areas. Vertical shields on the light fixtures shall also be used to direct light away from adjacent light sensitive land uses such as residences. Verification comments:	Prior to issuance of building permits	Public Works Department (PW) and Development & Resource Management Dept. (DARM)	X					

Aesthetics (continued):

MEIR MITIGATION MEASURE MONITORING CHECKLIST FOR EA NO. P18-02233

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
AES-2: Lighting systems for public facilities such as active play areas shall provide adequate illumination for the activity; however, low intensity light fixtures and shields shall be used to minimize spillover light onto adjacent properties. Verification comments:	Prior to issuance of building permits	DARM						X
AES-3: Lighting systems for non-residential uses, not including public facilities, shall provide shields on the light fixtures and orient the lighting system away from adjacent properties. Low intensity light fixtures shall also be used if excessive spillover light onto adjacent properties will occur. Verification comments:	Prior to issuance of building permits	DARM	X					
AES-4: Lighting systems for freestanding signs shall not exceed 100 foot Lamberts (FT-L) when adjacent to streets which have an average light intensity of less than 2.0 horizontal footcandles and shall not exceed 500 FT-L when adjacent to streets which have an average light intensity of 2.0 horizontal footcandles or greater.	Prior to issuance of building permits	DARM	X					
Verification comments:								

A - Incorporated into Project

B - Mitigated

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Aesthetics (continued):								
AES-5: Materials used on building facades shall be non-reflective. Verification comments:	Prior to development project approval	DARM	X					
Air Quality:								
 AIR-1: Projects that include five or more heavy-duty truck deliveries per day with sensitive receptors located within 300 feet of the truck loading area shall provide a screening analysis to determine if the project has the potential to exceed criteria pollutant concentration based standards and thresholds for NO2 and PM2.5. If projects exceed screening criteria, refined dispersion modeling and health risk assessment shall be accomplished and if needed, mitigation measures to reduce impacts shall be included in the project to reduce the impacts to the extent feasible. Mitigation measures include but are not limited to: Locate loading docks and truck access routes as far from sensitive receptors as reasonably possible considering site 	Prior to development project approval	DARM						X
 design limitations to comply with other City design standards. Post signs requiring drivers to limit idling to 5 minutes or less. 								
Verification comments:								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Air Quality (continued):								
AIR-2: Projects that result in an increased cancer risk of 10 in a million or exceed criteria pollutant ambient air quality standards shall implement site-specific measures that reduce toxic air contaminant (TAC) exposure to reduce excess cancer risk to less than 10 in a million. Possible control measures include but are not limited to:	Prior to development project approval	DARM						X
 Locate loading docks and truck access routes as far from sensitive receptors as reasonably possible considering site design limitations to comply with other City design standards. 								
Post signs requiring drivers to limit idling to 5 minutes or less								
Construct block walls to reduce the flow of emissions toward sensitive receptors								
Install a vegetative barrier downwind from the TAC source that can absorb a portion of the diesel PM emissions								
 For projects proposing to locate a new building containing sensitive receptors near existing sources of TAC emissions, install HEPA filters in HVAC systems to reduce TAC emission levels exceeding risk thresholds. 								
 Install heating and cooling services at truck stops to eliminate the need for idling during overnight stops to run onboard systems. 								
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Air Quality (continued):								
 AIR-2 (continued from previous page) For large distribution centers where the owner controls the vehicle fleet, provide facilities to support alternative fueled trucks powered by fuels such as natural gas or bio-diesel Utilize electric powered material handling equipment where feasible for the weight and volume of material to be moved. Verification comments: 	[see previous page]	[see previous page]						
AIR-3: Require developers proposing projects on ARB's list of projects in its Air Quality and Land Use Handbook (Handbook) warranting special consideration to prepare a cumulative health risk assessment when sensitive receptors are located within the distance screening criteria of the facility as listed in the ARB Handbook. Verification comments:	Prior to development project approval	DARM						X

WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Ε	F
Prior to development project approval	DARM						X
Prior to development project approval	DARM						X
	Prior to development project approval Prior to development development	Prior to development project approval Prior to development DARM Prior to development DARM	Prior to development project approval Prior to development DARM Prior to development DARM Prior to development	Prior to development project approval Prior to development project approval DARM Prior to development DARM	Prior to development project approval Prior to development development DARM Prior to development DARM Prior to development	Prior to development project approval Prior to development project approval DARM Prior to development	Prior to development project approval Prior to development project approval DARM Prior to development DARM

E - Part of City-Wide Program

F - Not Applicable

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Biological Resources:								
BIO-1: Construction of a proposed project should avoid, where possible, vegetation communities that provide suitable habitat for a special-status species known to occur within the Planning Area. If construction within potentially suitable habitat must occur, the presence/absence of any special-status plant or wildlife species must be determined prior to construction, to determine if the habitat supports any special-status species. If special-status species are determined to occupy any portion of a project site, avoidance and minimization measures shall be incorporated into the construction phase of a project to avoid direct or incidental take of a listed species to the greatest extent feasible. Verification comments:	Prior to development project approval	DARM	X					
BIO-2: Direct or incidental take of any state or federally listed species should be avoided to the greatest extent feasible. If construction of a proposed project will result in the direct or incidental take of a listed species, consultation with the resources agencies and/or additional permitting may be required. Agency consultation through the California Department of Fish and Wildlife (CDFW) 2081 and U.S. Fish and Wildlife Service (USFWS) Section 7 or Section 10 permitting processes must take place prior to any action that (continued on next page)	Prior to development project approval	DARM	X					

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Biological Resources (continued):								
BIO-2 (continued from previous page) may result in the direct or incidental take of a listed species. Specific mitigation measures for direct or incidental impacts to a listed species will be determined on a case-by-case basis through agency consultation. Verification comments:	[see previous page]	[see previous page]						
BIO-3: Development within the Planning Area should avoid, where possible, special-status natural communities and vegetation communities that provide suitable habitat for special-status species. If a proposed project will result in the loss of a special-status natural community or suitable habitat for special-status species, compensatory habitat-based mitigation is required under CEQA and the California Endangered Species Act (CESA). Mitigation will consist of preserving on-site habitat, restoring similar habitat or purchasing off-site credits from an approved mitigation bank. Compensatory mitigation will be determined through consultation with the City and/or resource agencies. An appropriate mitigation strategy and ratio will be agreed upon by the developer and lead agency to reduce project impacts to special-status natural communities to a less than significant (continued on next page)	Prior to development project approval	DARM	X					

B - Mitigated

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Biological Resources (continued):								
BIO-3 (continued from previous page): level. Agreed-upon mitigation ratios will depend on the quality	[see previous page]	[see previous page]						
of the habitat and presence/absence of a special-status species. The specific mitigation for project level impacts will be determined on a case-by-case basis.								
Verification comments:								
BIO-4: Proposed projects within the Planning Area should avoid, if possible, construction within the general nesting season of February through August for avian species protected under Fish and Game Code 3500 and the Migratory Bird Treaty Act (MBTA), if it is determined that suitable nesting habitat occurs on a project site. If construction cannot avoid the nesting season, a pre-construction clearance survey must be conducted to determine if any nesting birds or nesting activity is observed on or within 500-feet of a project site. If an active nest is observed during the survey, a biological monitor must be on site to ensure that no proposed project activities would impact the active nest. A suitable buffer will be established around the active nest until the nestlings have fledged and the nest is no longer active. Project activities	Prior to development project approval and during construction activities	DARM	X					

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

F - Not Applicable

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Biological Resources (continued):								
BIO-4 (continued from previous page):	[see previous page]	[see previous page]						
may continue in the vicinity of the nest only at the discretion of the biological monitor.	pagoj	pagoj						
Verification comments:								
BIO-5: If a proposed project will result in the removal or impact to any riparian habitat and/or a special-status natural community with potential to occur in the Planning Area, compensatory habitat-based mitigation shall be required to reduce project impacts. Compensatory mitigation must involve the preservation or restoration or the purchase of off-site mitigation credits for impacts to riparian habitat and/or a special-status natural community. Mitigation must be conducted in-kind or within an approved mitigation bank in the region. The specific mitigation ratio for habitat-based mitigation will be determined through consultation with the appropriate agency (<i>i.e.</i> , CDFW or USFWS) on a case-bycase basis.	Prior to development project approval	DARM	X					

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

F - Not Applicable

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Biological Resources (continued):								
BIO-6: Project impacts that occur to riparian habitat may also result in significant impacts to streambeds or waterways protected under Section 1600 of Fish and Wildlife Code and Section 404 of the CWA. CDFW and/or USACE consultation, determination of mitigation strategy, and regulatory permitting to reduce impacts, as required for projects that remove riparian habitat and/or alter a streambed or waterway, shall be implemented. Verification comments:	Prior to development project approval	DARM						X
BIO-7: Project-related impacts to riparian habitat or a special-status natural community may result in direct or incidental impacts to special-status species associated with riparian or wetland habitats. Project impacts to special-status species associated with riparian habitat shall be mitigated through agency consultation, development of a mitigation strategy, and/or issuing incidental take permits for the specific special-status species, as determined by the CDFW and/or USFWS. Verification comments:	Prior to development project approval	DARM						X

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Biological Resources (continued):								
BIO-8: If a proposed project will result in the significant alteration or fill of a federally protected wetland, a formal wetland delineation conducted according to U.S. Army Corps of Engineers (USACE) accepted methodology is required for each project to determine the extent of wetlands on a project site. The delineation shall be used to determine if federal permitting and mitigation strategy are required to reduce project impacts. Acquisition of permits from USACE for the fill of wetlands and USACE approval of a wetland mitigation plan would ensure a "no net loss" of wetland habitat within the Planning Area. Appropriate wetland mitigation/creation shall be implemented in a ratio according to the size of the impacted wetland.	Prior to development project approval	DARM						X
Verification comments:								
BIO-9: In addition to regulatory agency permitting, Best Management Practices (BMPs) identified from a list provided by the USACE shall be incorporated into the design and construction phase of the project to ensure that no pollutants or siltation drain into a federally protected wetland. Project design features such as fencing, appropriate drainage and (continued on next page)	Prior to development project approval; but for long-term operational BMPs, prior to issuance of occupancy	DARM						X

B - Mitigated

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Ε	F
Biological Resources (continued):								
BIO-9 (continued from previous page):	[see previous	[see previous						
incorporating detention basins shall assist in ensuring project- related impacts to wetland habitat are minimized to the greatest extent feasible.	page]	page]						
Verification comments:								
Cultural Resources:								
CUL-1: If previously unknown resources are encountered before or during grading activities, construction shall stop in the immediate vicinity of the find and a qualified historical resources specialist shall be consulted to determine whether the resource requires further study. The qualified historical resources specialist shall make recommendations to the City on the measures that shall be implemented to protect the discovered resources, including but not limited to excavation of the finds and evaluation of the finds in accordance with Section 15064.5 of the CEQA Guidelines and the City's Historic Preservation Ordinance.	Prior to commencement of, and during, construction activities	DARM	X					
If the resources are determined to be unique historical resources as defined under Section 15064.5 of the CEQA Guidelines, measures shall be identified by the monitor and								
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	A	В	С	D	E	F
Cultural Resources (continued):								
CUL-1 (continued from previous page)	[see previous	[see previous						
recommended to the Lead Agency. Appropriate measures for significant resources could include avoidance or capping, incorporation of the site in green space, parks, or open space, or data recovery excavations of the finds.	page]	page]						
No further grading shall occur in the area of the discovery until the Lead Agency approves the measures to protect these. Any historical artifacts recovered as a result of mitigation shall be provided to a City-approved institution or person who is capable of providing long-germ preservation to allow future scientific study.								
Verification comments:								
CUL-2: Subsequent to a preliminary City review of the project grading plans, if there is evidence that a project will include excavation or construction activities within previously undisturbed soils, a field survey and literature search for prehistoric archaeological resources shall be conducted. The following procedures shall be followed.	Prior to commencement of, and during, construction activities	DARM						X
If prehistoric resources are not found during either the field survey or literature search, excavation and/or construction activities can commence. In the event that buried prehistoric								
(continued on next page)								

B - Mitigated

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Cultural Resources (continued):								
archaeological resources are discovered during excavation and/or construction activities, construction shall stop in the immediate vicinity of the find and a qualified archaeologist shall be consulted to determine whether the resource requires further study. The qualified archaeologist shall make recommendations to the City on the measures that shall be implemented to protect the discovered resources, including but not limited to excavation of the finds and evaluation of the finds in accordance with CEQA Guidelines Section 15064.5.	[see previous page]	[see previous page]						
If the resources are determined to be unique prehistoric archaeological resources as defined under Section 15064.5 of the CEQA Guidelines, mitigation measures shall be identified by the monitor and recommended to the Lead Agency. Appropriate measures for significant resources could include avoidance or capping, incorporation of the site in green space, parks, or open space, or data recovery excavations of the finds. No further grading shall occur in the area of the discovery until the Lead Agency approves the measures to protect these resources. Any prehistoric archaeological artifacts recovered as a result of mitigation shall be provided (continued on next page)								

B - Mitigated

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Cultural Resources (continued):								
CUL-2 (further continued from previous two pages)	[see Page 14]	[see Page 14]						
to a City-approved institution or person who is capable of providing long-term preservation to allow future scientific study.								
If prehistoric resources are found during the field survey or literature review, the resources shall be inventoried using appropriate State record forms and submit the forms to the Southern San Joaquin Valley Information Center. The resources shall be evaluated for significance. If the resources are found to be significant, measures shall be identified by the qualified archaeologist. Similar to above, appropriate mitigation measures for significant resources could include avoidance or capping, incorporation of the site in green space, parks, or open space, or data recovery excavations of the finds.								
In addition, appropriate mitigation for excavation and construction activities in the vicinity of the resources found during the field survey or literature review shall include an archaeological monitor. The monitoring period shall be determined by the qualified archaeologist. If additional prehistoric archaeological resources are found during (continued on next page)								

Cultural Resources (continued):

A - Incorporated into Project

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
CUL-2 (further continued from previous three pages)	[see Page 14]	[see Page 14]						
excavation and/or construction activities, the procedure identified above for the discovery of unknown resources shall be followed.								
Verification comments:								
CUL-3: Subsequent to a preliminary City review of the project grading plans, if there is evidence that a project will include excavation or construction activities within previously undisturbed soils, a field survey and literature search for unique paleontological/geological resources shall be conducted. The following procedures shall be followed:	Prior to commencement of, and during, construction activities	DARM						X
If unique paleontological/geological resources are not found during either the field survey or literature search, excavation and/or construction activities can commence. In the event that unique paleontological/geological resources are discovered during excavation and/or construction activities, construction shall stop in the immediate vicinity of the find and a qualified paleontologist shall be consulted to determine whether the resource requires further study. The qualified paleontologist shall make recommendations to the City on the measures that shall be implemented to protect the discovered								
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
resources, including but not limited to, excavation of the finds and evaluation of the finds. If the resources are determined to be significant, mitigation measures shall be identified by the monitor and recommended to the Lead Agency. Appropriate mitigation measures for significant resources could include avoidance or capping, incorporation of the site in green space, parks, or open space, or data recovery excavations of the finds. No further grading shall occur in the area of the discovery until the Lead Agency approves the measures to protect these resources. Any paleontological/geological resources recovered as a result of mitigation shall be provided to a City-approved institution or person who is capable of providing long-term preservation to allow future scientific study.	[see previous page]	[see previous page]						
If unique paleontological/geological resources are found during the field survey or literature review, the resources shall be inventoried and evaluated for significance. If the resources are found to be significant, mitigation measures shall be identified by the qualified paleontologist. Similar to above, appropriate mitigation measures for significant resources could include avoidance or capping, incorporation of the site in green space, parks, or open space, or data recovery excavations of the finds. In addition, appropriate mitigation for excavation and construction activities in the vicinity of the (continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Cultural Resources (continued):								
CUL-3 (further continued from previous two pages)	[see Page 17]	[see Page 17]						
resources found during the field survey or literature review shall include a paleontological monitor. The monitoring period shall be determined by the qualified paleontologist. If additional paleontological/geological resources are found during excavation and/or construction activities, the procedure identified above for the discovery of unknown resources shall be followed.								
Verification comments:								
CUL-4: In the event that human remains are unearthed during excavation and grading activities of any future development project, all activity shall cease immediately. Pursuant to Health and Safety Code (HSC) Section 7050.5, no further disturbance shall occur until the County Coroner has made the necessary findings as to origin and disposition pursuant to PRC Section 5097.98(a). If the remains are determined to be of Native American descent, the coroner shall within 24 hours notify the Native American Heritage Commission (NAHC). The NAHC shall then contact the most	Prior to commencement of, and during, construction activities	DARM	X					
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Cultural Resources (continued):								
CUL-4 (continued from previous page)	[see previous page]	[see previous						
likely descendent of the deceased Native American, who shall then serve as the consultant on how to proceed with the remains.		page]						
Pursuant to PRC Section 5097.98(b), upon the discovery of Native American remains, the landowner shall ensure that the immediate vicinity, according to generally accepted cultural or archaeological standards or practices, where the Native American human remains are located is not damaged or disturbed by further development activity until the landowner has discussed and conferred with the most likely descendants regarding their recommendations, if applicable, taking into account the possibility of multiple human remains. The landowner shall discuss and confer with the descendants all reasonable options regarding the descendants' preferences for treatment. Verification comments:								
Vermoation comments.								

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Ε	F
Hazards and Hazardous Materials								
HAZ-1: Re-designate the existing vacant land proposed for low density residential located northwest of the intersection of East Garland Avenue and North Dearing Avenue and located within Fresno Yosemite International Airport Zone 1-RPZ, to Open Space.	Prior to development approvals	DARM						
Verification comments:								
HAZ-2: Limit the proposed low density residential (1 to 3 dwelling units per acre) located northwest of the airport, and located within Fresno Yosemite International Airport Zone 3-Inner Turning Area, to 2 dwelling units per acre or less.	Prior to development approvals	DARM						X
Verification comments:								
HAZ-3: Re-designate the current area within Fresno Yosemite International Airport Zone 5-Sideline located northeast of the airport to Public Facilities-Airport or Open Space.	Prior to development approvals	DARM						X
Verification comments:								

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Hazards and Hazardous Materials (continued):								
HAZ-4: Re-designate the current vacant lots at the northeast corner of Kearney Boulevard and South Thorne Avenue to Public Facilities-Airport or Open Space. Verification comments:	Prior to development approvals	DARM						X
HAZ-5: Prohibit residential uses within Safety Zone 1 northwest of the Hawes Avenue and South Thorne Avenue intersection. Verification comments:	Prior to development approvals	DARM						X
HAZ-6: Establish an alternative Emergency Operations Center in the event the current Emergency Operations Center is under redevelopment or blocked. Verification comments:	Prior to redevelopment of the current Emergency Operations Center	Fresno Fire Department and Mayor/ City Manager's Office						X

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

F - Not Applicable

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Hydrology and Water Quality								
HYD-1: The City shall develop and implement water conservation measures to reduce the per capita water use to 215 gallons per capita per day. Verification comments:	Prior to water demand exceeding water supply	Department of Public Utilities (DPU)					X	
HYD-2: The City shall continue to be an active participant in the Kings Water Authority and the implementation of the Kings Basin IRWMP. Verification comments:	Ongoing	DPU						X
 HYD-5.1: The City and partnering agencies shall implement the following measures to reduce the impacts on the capacity of existing or planned storm drainage Master Plan collection systems to less than significant. Implement the existing Storm Drainage Master Plan (SDMP) for collection systems in drainage areas where the amount of imperviousness is unaffected by the change in land uses. 	Prior to exceedance of capacity of existing stormwater drainage facilities	Fresno Metropolitan Flood Control District (FMFCD), DARM, and PW						X
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	IMPLEMENTED	VERIFIED BY	Α	В	С	D	E	F
Hydrology and Water Quality (continued):								
 Update the SDMP in those drainage areas where the amount of imperviousness increased due to the change in land uses to determine the changes in the collection systems that would need to occur to provide adequate capacity for the stormwater runoff from the increased imperviousness. Implement the updated SDMP to provide stormwater collection systems that have sufficient capacity to convey the peak runoff rates from the areas of increased imperviousness. 	[see previous page]	[see previous page]						
Require developments that increase site imperviousness to install, operate, and maintain FMFCD approved on-site detention systems to reduce the peak runoff rates resulting from the increased imperviousness to the peak runoff rates that will not exceed the capacity of the existing stormwater collection systems. Verification comments:								

WHEN

COMPLIANCE

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Hydrology and Water Quality (continued):								
 HYD-5.2: The City and partnering agencies shall implement the following measures to reduce the impacts on the capacity of existing or planned storm drainage Master Plan retention basins to less than significant: Consult the SDMP to analyze the impacts to existing and planned retention basins to determine remedial measures required to reduce the impact on retention basin capacity to less than significant. Remedial measures would include: Increase the size of the retention basin through the purchase of more land or deepening the basin or a combination for 	Prior to exceedance of capacity of existing retention basin facilities	FMFCD, DARM, and PW						X
 planned retention basins. Increase the size of the emergency relief pump capacity required to pump excess runoff volume out of the basin and into adjacent canal that convey the stormwater to a disposal facility for existing retention basins. 								
 Require developments that increase runoff volume to install, operate, and maintain, Low Impact Development (LID) measures to reduce runoff volume to the runoff volume that will not exceed the capacity of the existing retention basins. 								
Verification comments:								

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	А	В	С	D	Е	F
Hydrology and Water Quality (continued):								
HYD-5.3: The City and partnering agencies shall implement the following measures to reduce the impacts on the capacity of existing or planned storm drainage Master Plan urban detention (stormwater quality) basins to less than significant.	Prior to exceedance of capacity of existing urban	FMFCD, DARM, and PW						X
Consult the SDMP to determine the impacts to the urban detention basin weir overflow rates and determine remedial measures required to reduce the impact on the detention basin capacity to less than significant. Remedial measures would include:	detention basin (stormwater quality) facilities							
 Modify overflow weir to maintain the suspended solids removal rates adopted by the FMFCD Board of Directors. 								
 Increase the size of the urban detention basin to increase residence time by purchasing more land. The existing detention basins are already at the adopted design depth. 								
 Require developments that increase runoff volume to install, operate, and maintain, Low Impact Development (LID) measures to reduce peak runoff rates and runoff volume to the runoff rates and volumes that will not exceed the weir overflow rates of the existing urban detention basins. 								
Verification comments:								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
--------------------	------------------	---------------------------	---	---	---	---	---	---

Hydrology and Water Quality (continued):

 HYD-5.4: The City shall implement the following measures to reduce the impacts on the capacity of existing or planned storm drainage Master Plan pump disposal systems to less than significant. Consult the SDMP to determine the extent and degree to which the capacity of the existing pump system will be exceeded. 	Prior to exceedance of capacity of existing pump disposal systems	FMFCD, DARM, and PW	
 Require new developments to install, operate, and maintain FMFCD design standard on-site detention facilities to reduce peak stormwater runoff rates to existing planned peak runoff rates. 			
 Provide additional pump system capacity to maximum allowed by existing permitting to increase the capacity to match or exceed the peak runoff rates determined by the SDMP. 			
Verification comments:			

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Hydrology and Water Quality (continued):								
HYD-5.5: The City shall work with FMFCD to develop and adopt an update to the SDMP for the Southeast Development Area that would be adequately designed to collect, convey and dispose of runoff at the rates and volumes which would be generated by the planned land uses in that area.	Prior to development approvals in the Southeast Development Area	FMFCD, DARM, and PW						X
Verification comments: Public Services:								
 PS-1: As future fire facilities are planned, the fire department shall evaluate if specific environmental effects would occur. Typical impacts from fire facilities include noise, traffic, and lighting. Typical mitigation to reduce these impacts includes: Noise: Barriers and setbacks on the fire department sites. Traffic: Traffic devices for circulation and a "keep clear zone" during emergency responses. Lighting: Provision of hoods and deflectors on lighting 	During the planning process for future fire department facilities	DARM						X
fixtures on the fire department sites. Verification comments:								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Public Services (continued):								
PS-2: As future police facilities are planned, the police department shall evaluate if specific environmental effects would occur. Typical impacts from police facilities include noise, traffic, and lighting. Typical mitigation to reduce potential impacts from police department facilities includes:	During the planning process for future Police Department facilities	DARM						
 Noise: Barriers and setbacks on the police department sites. 								
Traffic: Traffic devices for circulation.								
Lighting: Provision of hoods and deflectors on lighting fixtures on the police department sites.								
Verification comments:								
PS-3: As future public and private school facilities are planned, school districts shall evaluate if specific environmental effects would occur with regard to public schools, and DARM shall evaluate other school facilities. Typical impacts from school facilities include noise, traffic, and lighting. Typical mitigation to reduce potential impacts from school facilities includes:	During the planning process for future school facilities	DARM, local school districts, and the Division of the State Architect						X
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Ε	F
Public Services (continued):								
 PS-3 (continued from previous page) Noise: Barriers and setbacks placed on school sites. Traffic: Traffic devices for circulation. Lighting: Provision of hoods and deflectors on lighting fixtures for stadium lights. Verification comments: 	[see previous page]	[see previous page]						
 PS-4: As future parks and recreational facilities are planned, the City shall evaluate if specific environmental effects would occur. Typical impacts from school facilities include noise, traffic, and lighting. Typical mitigation to reduce potential impacts from park and recreational facilities includes: Noise: Barriers and setbacks placed on school sites. Traffic: Traffic devices for circulation. Lighting: Provision of hoods and deflectors on lighting fixtures for outdoor play area/field lights. Verification comments: 	During the planning process for future park and recreation facilities	DARM						X

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Public Services (continued):								
 PS-5: As future detention, court, library, and hospital facilities are planned, the appropriate agencies shall evaluate if specific environmental effects would occur. Typical impacts from court, library, and hospital facilities include noise, traffic, and lighting. Typical mitigation to reduce potential impacts includes: Noise: Barriers and setbacks placed on school sites. Traffic: Traffic devices for circulation. Lighting: Provision of hoods and deflectors on outdoor lighting fixtures. Verification comments: 	During the planning process for future detention, court, library, and hospital facilities	DARM, to the extent that agencies constructing these facilities are subject to City of Fresno regulation						X
Utilities and Service Systems								
USS-1: The City shall develop and implement a wastewater master plan update. Verification comments:	Prior to wastewater conveyance and treatment demand exceeding capacity	DPU						X

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

 $\boldsymbol{\mathsf{E}}$ - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems (continued):								
USS-2: Prior to exceeding existing wastewater treatment capacity, the City shall evaluate the wastewater system and shall not approve additional development that contributes wastewater to the wastewater treatment facility that could exceed capacity until additional capacity is provided. By approximately the year 2025, the City shall construct the following improvements:	Prior to exceeding existing wastewater treatment capacity	DPU						X
 Construct an approximately 70 MGD expansion of the Regional Wastewater Treatment and Reclamation Facility and obtain revised waste discharge permits as the generation of wastewater is increased. 								
 Construct an approximately 0.49 MGD expansion of the North Facility and obtain revised waste discharge permits as the generation of wastewater is increased. 								
Verification comments:								
USS-3: Prior to exceeding existing wastewater treatment capacity, the City shall evaluate the wastewater system and shall not approve additional development that contributes wastewater to the wastewater treatment facility that could exceed capacity until additional capacity is provided. After (continued on next page)	Prior to exceeding existing wastewater treatment capacity	DPU						X

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems (continued):								
USS-3 (continued from previous page)	[see previous	[see previous						
approximately the year 2025, the City shall construct the following improvements:	page]	page]						
 Construct an approximately 24 MGD wastewater treatment facility within the Southeast Development Area and obtain revised waste discharge requirements as the generation of wastewater is increased. 								
 Construct an approximately 9.6 MGD expansion of the Regional Wastewater Treatment and Reclamation Facility and obtain revised waste discharge permits as the generation of wastewater is increased. 								
Verification comments:								
USS-4: A Traffic Control/Traffic Management Plan to address traffic impacts during construction of water and sewer facilities shall be prepared and implemented, subject to approval by the City (and Fresno County, when work is being done in unincorporated area roadways). The plan shall identify access and parking restrictions, pavement markings and signage, and hours of construction and for deliveries. It shall include haul routes, the notification plan, and coordination with emergency service providers and schools.	Prior to construction of water and sewer facilities	PW for work in the City; PW and Fresno County Public Works and Planning when unincorporated area roadways are involved						X
Verification comments:								

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems (continued):								
USS-5 : Prior to exceeding capacity within the existing wastewater collection system facilities, the City shall evaluate the wastewater collection system and shall not approve additional development that would generate additional wastewater and exceed the capacity of a facility until additional capacity is provided. By approximately the year 2025, the following capacity improvements shall be provided.	Prior to exceeding capacity within the existing wastewater collection system facilities	DPU						X
 Orange Avenue Trunk Sewer: This facility shall be improved between Dakota and Jensen Avenues. Approximately 37,240 feet of new sewer main shall be installed and approximately 5,760 feet of existing sewer main shall be rehabilitated. The size of the new sewer main shall range from 27 inches to 42 inches in diameter. The associated project designations in the 2006 Wastewater Master Plan are RS03A, RL02, C01-REP, C02-REP, C03-REP, C04-REP, C05-REP, C06-REL and C07-REP. 								
 Marks Avenue Trunk Sewer: This facility shall be improved between Clinton Avenue and Kearney Boulevard. Approximately 12,150 feet of new sewer main shall be installed. The size of the new sewer main shall range from 33 inches to 60 inches in diameter. The associated project designations in the 2006 Wastewater Master Plan are CM1-REP and CM2-REP. 								
(continued on next page)								

D - Responsible Agency Contacted

C - Mitigation in Process

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems (continued):								
 USS-5 (continued from previous page) North Avenue Trunk Sewer: This facility shall be improved between Polk and Fruit Avenues and also between Orange and Maple Avenues. Approximately 25,700 feet of new sewer main shall be installed. The size of the new sewer main shall range from 48 inches to 66 inches in diameter. The associated project designations in the 2006 Wastewater Master Plan are CN1-REL1 and CN3-REL1. Ashlan Avenue Trunk Sewer: This facility shall be improved between Hughes and West Avenues and also between Fruit and Blackstone Avenues. Approximately 9,260 feet of new sewer main shall be installed. The size of the new sewer main shall range from 24 inches to 36 inches in diameter. The associated project designations in the 2006 Wastewater Master Plan are CA1-REL and CA2-REP. Verification comments: 	[see previous page]	[see previous page]						

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems (continued):								
USS-6: Prior to exceeding capacity within the existing 28 pipeline segments shown in Figures 1 and 2 in Appendix J-1, the City shall evaluate the wastewater collection system and shall not approve additional development that would generate additional wastewater and exceed the capacity of one of the 28 pipeline segments until additional capacity is provided. Verification comments:	Prior to exceeding capacity within the existing 28 pipeline seg- ments shown in Figures 1 and 2 in Appendix J-1 of the MEIR	DPU						X
USS-7: Prior to exceeding existing water supply capacity, the City shall evaluate the water supply system and shall not approve additional development that demand additional water until additional capacity is provided. By approximately the year 2025, the following capacity improvements shall be provided.	Prior to exceeding existing water supply capacity	DPU						X
 Construct an approximately 80 million gallon per day (MGD) surface water treatment facility near the intersection of Armstrong and Olive Avenues, in accordance with Chapter 9 and Figure 9-1 of the City of Fresno Metropolitan Water Resources Management Plan Update (2014 Metro Plan Update) Phase 2 Report, dated January 2012. 								
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

 $\boldsymbol{\mathsf{E}}$ - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems (continued):								
 USS-7 (continued from previous page) Construct an approximately 30 MGD expansion of the existing northeast surface water treatment facility for a total capacity of 60 MGD, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. Construct an approximately 20 MGD surface water treatment facility in the southwest portion of the City, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. Verification comments: 	[see previous page]	[see previous page]						
 USS-8: Prior to exceeding capacity within the existing water conveyance facilities, the City shall evaluate the water conveyance system and shall not approve additional development that would demand additional water and exceed the capacity of a facility until additional capacity is provided. The following capacity improvements shall be provided by approximately 2025. Construct 65 new groundwater wells, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. (continued on next page) 	Prior to exceeding capacity within the existing water conveyance facilities	DPU						X

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems (continued):								
USS-8 (continued from previous page)	[see previous	[see previous						
 Construct a 2.0 million gallon potable water reservoir (Reservoir T2) near the intersection of Clovis and California Avenues, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. 	page]	page]						
 Construct a 3.0 million gallon potable water reservoir (Reservoir T3) near the intersection of Temperance and Dakota Avenues, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. 								
 Construct a 3.0 million gallon potable water reservoir (Reservoir T4) in the Downtown Planning Area, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. 								
 Construct a 4.0 million gallon potable water reservoir (Reservoir T5) near the intersection of Ashlan and Chestnut Avenues, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. 								
 Construct a 4.0 million gallon potable water reservoir (Reservoir T6) near the intersection of Ashlan Avenue and Highway 99, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. 								
(continued on next page)								

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems (continued):								
USS-8 (continued from previous two pages)	[see Page 37]	[see Page 37]						
 Construct 50.3 miles of regional water transmission mains ranging in size from 24-inch to 48-inch diameter, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. 								
 Construct 95.9 miles of 16-inch diameter transmission grid mains, in accordance with Chapter 9 and Figure 9-1 of the 2014 Metro Plan Update. 								
Verification comments:								
USS-9: Prior to exceeding capacity within the existing water conveyance facilities, the City shall evaluate the water conveyance system and shall not approve additional development that would demand additional water and exceed the capacity of a facility until additional capacity is provided. The following capacity improvements shall be provided after approximately the year 2025 and additional water conveyance facilities shall be provided prior to exceedance of capacity within the water conveyance facilities to accommodate full buildout of the General Plan Update.	Prior to exceeding capacity within the existing water conveyance facilities	DPU						X
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems (continued):								
USS-9 (continued from previous page)	[see previous	[see previous						
 Construct a 4.0 million gallon potable water reservoir (SEDA Reservoir 1) within the northern part of the Southeast Development Area. 	page]	page]						
 Construct a 4.0 million gallon potable water reservoir (SEDA Reservoir 2) within the southern part of the Southeast Development Area. 								
Additional water conveyance facilities shall be provided prior to exceedance of capacity within the water conveyance facilities to accommodate full buildout of the General Plan Update.								
Verification comments:								
Utilities and Service Systems - Hydrology and Water Quality		l						
USS-10: In order to maintain Fresno Irrigation District canal operability, FMFCD shall maintain operational intermittent flows during the dry season, within defined channel capacity and downstream capture capabilities, for recharge. Verification comments:	During the dry season	Fresno Irrigation District (FID)						X
vernication comments:								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems - Biological Resources:								
 USS-11: When FMFCD proposes to provide drainage service outside of urbanized areas: (a) FMFCD shall conduct preliminary investigations on undeveloped lands outside of highly urbanized areas. These investigations shall examine wetland hydrology, vegetation and soil types. These preliminary investigations shall be the basis for making a determination on whether or not more in-depth wetland studies shall be necessary. If the proposed project site does not exhibit wetland hydrology, support a prevalence of wetland vegetation and wetland soil types then no further action is required. 	Prior to development approvals outside of highly urbanized areas	California Regional Water Quality Control Board (RWQCB), and USACE				X		
(b) Where proposed activities could have an impact on areas verified by the Corps as jurisdictional wetlands or waters of the U.S. (urban and rural streams, seasonal wetlands, and vernal pools), FMFCD shall obtain the necessary Clean Water Act, Section 404 permits for activities where fill material shall be placed in a wetland, obstruct the flow or circulation of waters of the United States, impair or reduce the reach of such waters. As part of FMFCD's Memorandum of Understanding with CDFG, Section 404 and 401 permits would be obtained from the U.S. Army Corps of Engineers and from the (continued on next page)								

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

F - Not Applicable

		MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilit	ies ar	nd Service Systems - Biological Resources (continue	ed):							<u>_</u>
USS	,	continued from previous page)	[see previous page]	[see previous page]						
	invo to n	ional Water Quality Control Board for any activity lving filling of jurisdictional waters). At a minimum, neet "no net loss policy," the permits shall require acement of wetland habitat at a 1:1 ratio.	pagej	pagej						
(c)	area wate wetl impl wetl Eng prep	ere proposed activities could have an impact on as verified by the Corps as jurisdictional wetlands or ers of the U.S. (urban and rural streams, seasonal ands, and vernal pools), FMFCD shall submit and ement a wetland mitigation plan based on the and acreage verified by the U.S. Army Corps of ineers. The wetland mitigation plan shall be pared by a qualified biologist or wetland scientist erienced in wetland creation, and shall include the wing or equally effective elements:								
	i.	Specific location, size, and existing hydrology and soils within the wetland creation area.								
	ii.	Wetland mitigation techniques, seed source, planting specifications, and required buffer setbacks. In addition, the mitigation plan shall ensure adequate water supply is provided to the created wetlands in order to maintain the proper								
		(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

		MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utiliti	es a	and Service Systems - Biological Resources (continue	ed):							
USS	-11	(continued from previous two pages)	[see Page 41]	[see Page 41]						
		hydrologic regimes required by the different types of wetlands created. Provisions to ensure the wetland water supply is maintained in perpetuity shall be included in the plan.								
	iii.	A monitoring program for restored, enhanced, created, and preserved wetlands on the project site. A monitoring program is required to meet three objectives; 1) establish a wetland creation success criteria to be met; 2) to specify monitoring methodology; 3) to identify as far as is possible, specific remedial actions that will be required in order to achieve the success criteria; and 4) to document the degree of success achieved in establishing wetland vegetation.								
(d)	by we mo fre wh	monitoring plan shall be developed and implemented a qualified biologist to monitor results of any on-site etland restoration and creation for five years. The ponitoring plan shall include specific success criteria, equency and timing of monitoring, and assessment of mether or not maintenance activities are being carried at and how these shall be adjusted if necessary.								
		(continued on next page)								

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Ε	F
Utilities and Service Systems - Biological Resources (continu	ed):							
USS-11 (continued from previous three pages)	[see Page 41]	[see Page 41]						
If monitoring reveals that success criteria are not being met, remedial habitat creation or restoration should be designed and implemented by a qualified biologist and subject to five years of monitoring as described above.								
Or								
(e) In lieu of developing a mitigation plan that outlines the avoidance, purchase, or creation of wetlands, FMFCD could purchase mitigation credits through a Corps approved Mitigation Bank.								
Verification comments:								
 USS-12: When FMFCD proposes to provide drainage service outside in areas that support seasonal wetlands or vernal pools: (a) During facility design and prior to initiation of ground disturbing activities in areas that support seasonal wetlands or vernal pools, FMFCD shall conduct a preliminary rare plant assessment. The assessment will determine the likelihood on whether or not the project site could support rare plants. If it is determined that the project site would not support rare plants, then no further 	During facility design and prior to initiation of ground disturbing activities in areas that support seasonal wetlands or vernal pools	California Department of Fish & Wildlife (CDFW) and U.S. Fish and Wildlife Service (USFWS)						X
(continued on next page)								

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

F - Not Applicable

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems - Biological Resources (continue	ed):							
uss-12 (continued from previous page) action is required. However, if the project site has the potential to support rare plants; then a rare plant survey shall be conducted. Rare plant surveys shall be conducted by qualified biologists in accordance with the most current CDFG/USFWS guidelines or protocols and shall be conducted at the time of year when the plants in question are identifiable.	[see previous page]	[see previous page]						
(b) Based on the results of the survey, prior to design approval, FMFCD shall coordinate with CDFG and/or implement a Section 7 consultation with USFWS, shall determine whether the project facility would result in a significant impact to any special status plant species. Evaluation of project impacts shall consider the following:								
 The status of the species in question (e.g., officially listed by the State or Federal Endangered Species Acts). 								
 The relative density and distribution of the on-site occurrence versus typical occurrences of the species in question. 								
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems - Biological Resources (continue	ed):							
USS-12 (continued from previous two pages)	[see Page 44]	[see Page 44]						
 The habitat quality of the on-site occurrence relative to historic, current or potential distribution of the population. 								
(c) Prior to design approval, and in consultation with the CDFG and/or the USFWS, FMFCD shall prepare and implement a mitigation plan, in accordance with any applicable State and/or federal statutes or laws, that reduces impacts to a less than significant level.								
Verification comments:								
USS-13: When FMFCD proposes to provide drainage service outside in areas that support seasonal wetlands or vernal pools:	During facility design and prior to initiation of ground	CDFW and USFWS						X
(a) During facility design and prior to initiation of ground disturbing activities in areas that support seasonal wetlands or vernal pools, FMFCD shall conduct a preliminary survey to determine the presence of listed vernal pool crustaceans.	disturbing activities in areas that support seasonal wetlands or							
(continued on next page)	vernal pools							

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

	MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utiliti	ies and Service Systems - Biological Resources (continue	ed):							
(b)	If potential habitat (vernal pools, seasonally inundated areas) or fairy shrimp exist within areas proposed to be disturbed, FMFCD shall complete the first and second phase of fairy shrimp presence or absence surveys. If an absence finding is determined and accepted by the USFWS, then no further mitigation shall be required for fairy shrimp.	[see previous page]	[see previous page]						
(c)	If fairy shrimp are found to be present within vernal pools or other areas of inundation to be impacted by the implementation of storm drainage facilities, FMFCD shall mitigate impacts on fairy shrimp habitat in accordance with the USFWS requirements of the Programmatic Biological Opinion. This shall include on-site or off-site creation and/or preservation of fairy shrimp habitat at ratios ranging from 3:1 to 5:1 depending on the habitat impacted and the choice of on-site or off-site mitigation. Or mitigation shall be the purchase of mitigation credit through an accredited mitigation bank.								
Veri	fication comments:								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

	MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utiliti	es and Service Systems - Biological Resources (continue	ed):							
USS	-14: When FMFCD proposes to construct drainage ties in an area where elderberry bushes may occur: During facility design and prior to initiation of construction activities, FMFCD shall conduct a project-specific survey for all potential Valley Elderberry Longhorn Beetle (VELB) habitats (elderberry shrubs), including a stem count and an assessment of historic or current VELB habitat. FMFCD shall avoid and protect all potential identified VELB habitat where feasible. Where avoidance is infeasible, develop and implement a VELB mitigation plan in accordance with the most current USFWS mitigation guidelines for unavoidable take of VELB habitat pursuant to either Section 7 or Section 10(a) of the Federal Endangered Species Act. The mitigation plan shall include, but might not be limited to, relocation of elderberry shrubs, planting of elderberry shrubs, and monitoring of relocated and planted	During facility design and prior to initiation of construction activities	CDFW and USFWS						X
Veri	elderberry shrubs. fication comments:								

C - Mitigation in ProcessD - Responsible Agency Contacted

E - Part of City-Wide Program

 $\boldsymbol{\mathsf{E}}$ - Part of City-Wide Program

F - Not Applicable

A - Incorporated into Project

B - Mitigated

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems - Biological Resources (continue	ed):							
USS-15: Prior to ground disturbing activities during nesting season (March through July) for a project that supports bird nesting habitat, FMFCD shall conduct a survey of trees. If nests are found during the survey, a qualified biologist shall assess the nesting activity on the project site. If active nests are located, no construction activities shall be allowed within 250 feet of the nest until the young have fledged. If construction activities are planned during the no n-breeding period (August through February), a nest survey is not necessary. Verification comments:	Prior to ground disturbing activities during nesting season (March through July) for a project that supports bird nesting habitat	CDFW and USFWS						
 USS-16: When FMFCD proposes to construct drainage facilities in an area that supports bird nesting habitat: (a) FMFCD shall conduct a pre-construction breeding-season survey (approximately February 1 through August 31) of proposed project sites in suitable habitat (levee and canal berms, open grasslands with suitable burrows) during the same calendar year that construction is planned to begin. If phased construction procedures are planned for the proposed project, the results of the above survey shall be valid only for the season when it is conducted. (continued on next page) 	Prior to ground disturbing activities during nesting season (March through July) for a project that supports bird nesting habitat	CDFW and USFWS						X

D - Responsible Agency Contacted

C - Mitigation in Process

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems - Biological Resources (continue	ed):							
 (b) During the construction stage, FMFCD shall avoid all burrowing owl nest sites potentially disturbed by project construction during the breeding season while the nest is occupied with adults and/or young. The occupied nest site shall be monitored by a qualified biologist to determine when the nest is no longer used. Avoidance shall include the establishment of a 160-foot diameter non-disturbance buffer zone around the nest site. Disturbance of any nest sites shall only occur outside of the breeding season and when the nests are unoccupied based on monitoring by a qualified biologist. The buffer zone shall be delineated by highly visible temporary construction fencing. 	[see previous page]	[see previous page]						
Based on approval by CDFG, pre-construction and pre-breeding season exclusion measures may be implemented to preclude burrowing owl occupation of the project site prior to project-related disturbance. Burrowing owls can be passively excluded from potential nest sites in the construction area, either by closing the burrows or placing one-way doors in the burrows according to current CDFG protocol. Burrows shall be examined not more than 30 days before construction to ensure that no owls have recolonized the area of construction. (continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utilities and Service Systems - Biological Resources (continue	ed):							
USS-16 (continued from previous two pages) For each burrow destroyed, a new burrow shall be created (by installing artificial burrows at a ratio of 2:1 on protected lands nearby. Verification comments:	[see Page 49]	[see Page 49]						
 USS-17: When FMFCD proposes to construct drainage facilities in the San Joaquin River corridor: (a) FMFCD shall not conduct instream activities in the San Joaquin River between October 15 and April 15. If this is not feasible, FMFCD shall consult with the National Marine Fisheries Service and CDFW on the appropriate measures to be implemented in order to protect listed salmonids in the San Joaquin River. (b) Riparian vegetation shading the main—channel that is removed or damaged shall be replaced at a ratio and quantity sufficient to maintain the existing shading of the channel. The location of replacement trees on or within (continued on next page) 	During instream activities conducted between October 15 and April 15	National Marine Fisheries Service (NMFS), CDFW, and Central Valley Flood Protection Board (CVFPB)						X

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

F - Not Applicable

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	А	В	С	D	Ε	F
Utilities and Service Systems / Biological Resources (continue	ed):							
USS-17 (continued from previous page) FMFCD berms, detention ponds or river channels shall be approved by FMFCD and the Central Valley Flood Protection Board. Verification comments:	[see previous page]	[see previous page]						
USS-18: When FMFCD updates its District Service Plan: Prior to final design approval of all elements of the District Services Plan, FMFCD shall consult with Fresno County, City of Fresno, and City of Clovis to determine if any element would temporarily disrupt or permanently displace adopted existing or planned trails and associated recreational facilities as a result of the proposed District Services Plan. If the proposed project would not temporarily disrupt or permanently displace adopted existing or planned trails, no further mitigation is necessary. If the proposed project would have an effect on the trails and associated facilities, FMFCD shall implement the following:	Prior to final design approval of all elements of the District Services Plan	DARM, PW, City of Clovis, and County of Fresno						X

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems - Recreation / Trails (continued):								
USS-18 (continued from previous page)	[see previous	[see previous						
(a) If short-term disruption of adopted existing or planned trails and associated recreational facilities occur, FMFCD shall consult and coordinate with Fresno County, City of Fresno, and City of Clovis to temporarily re-route the trails and associated facilities.	page]	page]						
(b) If permanent displacement of the adopted existing or planned trails and associated recreational facilities occur, the appropriate design modifications to prevent permanent displacement shall be implemented in the final project design or FMFCD shall replace these facilities.								
Verification comments:								
Utilities and Service Systems – Air Quality:								
USS-19: When District drainage facilities are constructed, FMFCD shall:	During storm water drainage	Fresno Metropolitan Flood Control						X
(a) Minimize idling time of construction equipment vehicles to no more than ten minutes, or require that engines be shut off when not in use.	facility construction activities	District and SJVAPCD						
(continued on next page)								

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

	MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	Е	F
Utili	ties and Service Systems – Air Quality (continued):								
US	S-19 (continued from previous page)	[see previous	[see previous						
(b)	Construction shall be curtailed as much as possible when the Air Quality Index (AQI) is above 150. AQI forecasts can be found on the SJVAPCD web site.	page]	page]						
(c)	Off-road trucks should be equipped with on-road engines if possible.								
(d)	Construction equipment should have engines that meet the current off-road engine emission standard (as certified by CARB), or be re-powered with an engine that meets this standard.								
Ve	rification comments:								
Utili	ties and Service Systems – Adequacy of Storm Water Dra	inage Facilities:							
wa to app sto	SS-20: Prior to exceeding capacity within the existing storm the drainage facilities, the City shall coordinate with FMFCD evaluate the storm water drainage system and shall not prove additional development that would convey additional orm water to a facility that would experience an exceedance capacity until the necessary additional capacity is provided.	Prior to exceeding capacity within the existing storm water drainage facilities	FMFCD, PW, and DARM						X
Ve	rification comments:								

C - Mitigation in Process

D - Responsible Agency Contacted

 $\boldsymbol{\mathsf{E}}$ - Part of City-Wide Program

MITIGATION MEASURE	WHEN IMPLEMENTED	COMPLIANCE VERIFIED BY	Α	В	С	D	E	F
Utilities and Service Systems – Adequacy of Water Supply Ca	npacity:							
USS-21: Prior to exceeding existing water supply capacity, the City shall evaluate the water supply system and shall not approve additional development that demand additional water until additional capacity is provided. By approximately the year 2025, the City shall construct an approximately 25,000 AF/year tertiary recycled water expansion to the Fresno-Clovis Regional Wastewater Reclamation Facility in accordance with the 2013 Recycled Water Master Plan and the 2014 City of Fresno Metropolitan Water Resources Management Plan update. Implementation of Mitigation Measure USS-5 is also required prior to approximately the year 2025. Verification comments:	Prior to exceeding existing water supply capacity	DPU and DARM						X
Utilities and Service Systems – Adequacy of Landfill Capacity	<i>r</i> :							
USS-22: Prior to exceeding landfill capacity, the City shall evaluate additional landfill locations and shall not approve additional development that could contribute solid waste to a landfill that is at capacity until additional capacity is provided. Verification comments:	Prior to exceeding landfill capacity	DPU and DARM						X

B - Mitigated

C - Mitigation in Process

D - Responsible Agency Contacted

E - Part of City-Wide Program

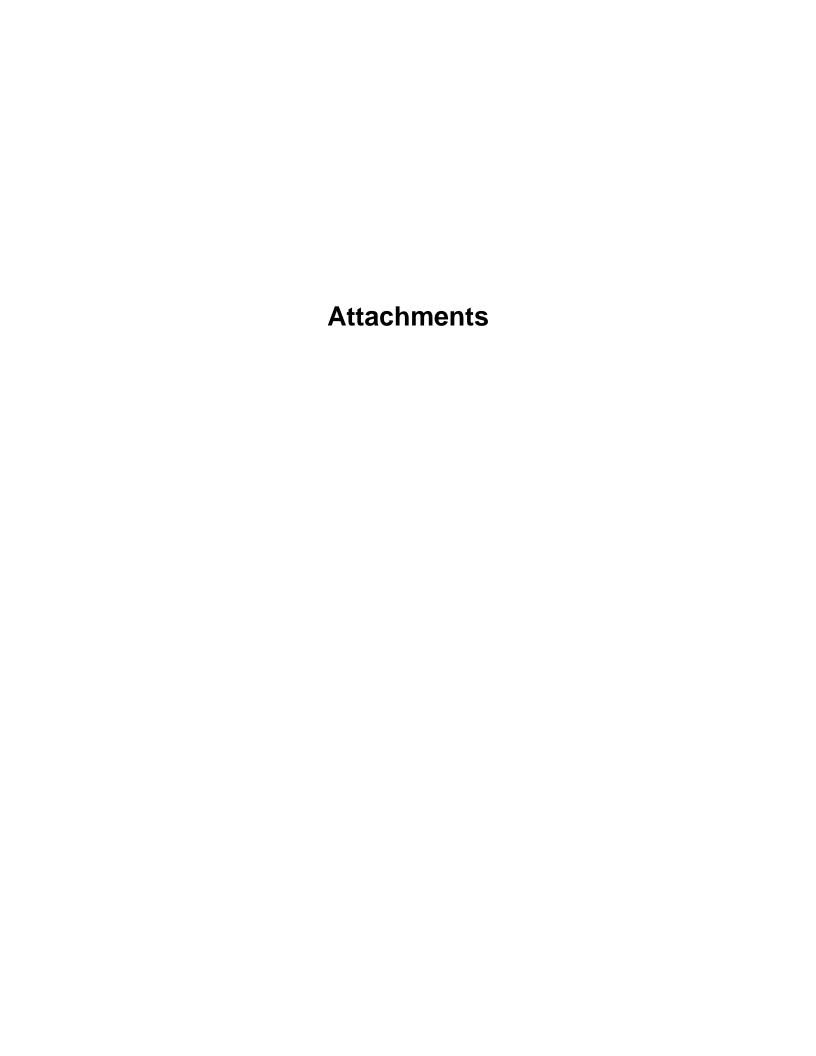
CITY OF FRESNO MITIGATED NEGATIVE DECLARATION PROJECT SPECIFIC MITIGATION MONITORING CHECKLIST ENVIRONMENTAL ASSESSMENT NO. P18-02233

Project/EA No. <u>P18-02233</u> Date: March 2019

Mitigation Measure	Implemented By	When Implemented	Verified By
BIO-1. The project proponent shall implement the following measure to avoid or minimize impacts on western burrowing owl:		Prior to issuance of building permits	
 No less than 14 days before initiating ground disturbance activities, a qualified biologist shall complete an initial take avoidance survey using the recommended methods described in the Detection Surveys section of the March 7, 2012, CDFW Staff Report on Burrowing Owl Mitigation (CDFW 2012). Implementation of avoidance and minimization measures (as presented in the March 7, 2012, CDFW Staff Report on Burrowing Owl Mitigation) would be triggered if the initial take avoidance survey results in positive owl presence in the Plan Area where project activities shall occur. If needed, the development of avoidance and minimization approaches shall be developed in coordination with CDFW. 			

CITY OF FRESNO MITIGATED NEGATIVE DECLARATION PROJECT SPECIFIC MITIGATION MONITORING CHECKLIST ENVIRONMENTAL ASSESSMENT NO. P18-02233

Project/EA No. <u>P18-02233</u>	Date	e: March 2019
 BIO-2. The project proponent shall implement the following measures to avoid or minimize impacts on Swainson's hawk: No more than 30 days before the commencement of construction, a 	DARM	Prior to issuance of building permits
qualified biologist shall perform preconstruction surveys for nesting Swainson's hawk and other raptors during the nesting season (February 1 through August 31). • Appropriate buffers shall be established and maintained around active nest sites during construction activities to avoid nest failure as a result of project activities. The appropriate size and shape of the		
buffers shall be determined by a qualified biologist, in coordination with CDFW, and may vary depending on the nest location, nest stage, and construction activity. The buffers may be adjusted if a qualified biologist determines it would not be likely to adversely affect the nest. Monitoring shall be conducted to confirm that project activity is not resulting in detectable adverse effects on nesting birds		
or their young. No project activity shall commence within the buffer areas until a qualified biologist has determined that the young have fledged or the nest site is otherwise no longer in use. • Before the commencement of construction, the project proponent shall provide compensatory mitigation for the permanent loss of		
Swainson's hawk foraging habitat. Mitigation shall be at the CDFW specified ratios, which are based on distance to nests. The Plan Area's distance to the closest nest falls within the range of "within 5 miles of an active nest tree but greater than 1 mile from the nest tree." As such, the Project shall be responsible for 0.75 acres of each acre of urban development authorized (0-75:1 ratio). The		
project proponent shall either provide lands protected through fee title acquisition or conservation easement (acceptable to the CDFW) on agricultural lands or other suitable habitats which provide foraging habitat for Swainson's hawk.		


CITY OF FRESNO MITIGATED NEGATIVE DECLARATION PROJECT SPECIFIC MITIGATION MONITORING CHECKLIST ENVIRONMENTAL ASSESSMENT NO. P18-02233

Project/EA No. <u>P18-02233</u>	Date	e: March 2019
BIO-3. The project proponent shall implement the following measure to avoid or minimize impacts on other protected bird species that may occur on the site:		Prior to issuance of building permits
 Preconstruction surveys for active nests of special-status birds shall be conducted by a qualified biologist in all areas of suitable habitated within 500 feet of project disturbance. Surveys shall be conducted within 14 days before commencement of any construction activities that occur during the nesting season (February 15 to August 31) in a given area. If any active nests, or behaviors indicating that active nests are present, are observed, appropriate buffers around the nest sites shall be determined by a qualified biologist to avoid nest failure resulting from project activities. The size of the buffer shall depend on the species, nest location, nest stage, and specific construction activities to be performed while the nest is active. The buffers may be adjusted if a qualified biologist determines it would not be likely to adversely affect the nest. If buffers are adjusted, monitoring will be conducted to confirm that project activity is not resulting in detectable adverse effects on nesting birds or their young. No project activity shall commence within the buffer areas until a qualified biologist has determined that the young have fledged or the nest site is otherwise no longer in use. 		

CITY OF FRESNO MITIGATED NEGATIVE DECLARATION PROJECT SPECIFIC MITIGATION MONITORING CHECKLIST ENVIRONMENTAL ASSESSMENT NO. P18-02233

Project/EA No. P18-02233	Date: March 2019
---------------------------------	------------------

. 10,000 <u>- 11101 - 1</u>			51 1116H 511 = 5 1 5
	BIO-4. The project proponent shall implement the following measures to avoid or minimize impacts on special-status bats:		Prior to issuance of building permits
	 If removal of suitable roosting areas (i.e. trees, shrubs, etc.) must occur during the bat pupping season (April 1 through July 31), surveys for active maternity roosts shall be conducted by a qualified biologist. The surveys shall be conducted from dusk until dark. If a special-status bat maternity roost is located, appropriate buffers around the roost sites shall be determined by a qualified biologist and implemented to avoid destruction or abandonment of the roost resulting from habitat removal or other project activities. The size of the buffer shall depend on the species, roost location, and specific construction activities to be performed in the vicinity. No project activity shall commence within the buffer areas until the end of the pupping season (August 1) or until a qualified biologist conforms the maternity roost is no longer active. 		
	CIRC-1. Prior to issuance of a building permit, the project proponent shall pay the equitable fair share as presented in Table IX of the Traffic Impact Analysis (JLB Traffic Engineering, Inc., January 12, 2018). The project applicant shall also pay other applicable traffic impact fees (including, but not limited to, the Traffic Signal Mitigation Impact [TSMI] Fee, Fresno Major Street Impact [FMSI] Fee, and the Regional Transportation Mitigation Fee [RTMF]).	DARM	Prior to issuance of building permits

School

Fire Station

Appendix A

Air Quality Technical Memorandum

To: Mr. Neil Angelillo From: Elena Nuño, Senior Air Quality Scientist

True North Properties 7502 N Colonial, Suite 101

1155 W. Shaw Avenue # 104 Fresno, CA 93711 Fresno, CA 93711

File: 1857 Date: December 20, 2018

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

At the request of True North Properties, Stantec Consulting services prepared this Air Quality Technical Memorandum to analyze criteria air pollutants and toxic air contaminants (TACs) associated with the construction and operation of the project located at 2999 South Orange Ave (referred to hereafter as the proposed project). This analysis is being performed to support the proposed project's California Environmental Quality Act (CEQA) documentation and per the request of the City of Fresno Planning Department.

This memorandum discusses the construction and operational emissions sources, methodology for calculating emissions, and the methodology for conducting the prioritization screening for health risks.

PROJECT UNDERSTANDING

The proposed project is located at 2999 South Orange Avenue, in the City of Fresno, California, approximately 0.4 miles from the State Route 99 (SR 99) southbound off-ramp (North Avenue) and 0.90 miles from the SR 99 northbound offramp (Cedar Avenue) (see Figure 1). The proposed project involves the construction and operation of a 13,289 square foot commercial development on 3.72 acres in the City of Fresno, California. The project site is shown in Figure 2. The proposed project is broken up into the following components:

- Convenience market with gas station 3,062 square feet of building and 12 pumps
- Panda Express 2,227 square feet
- Retail Building 5,000 square feet (note that the site plan shows a potential drive through)
- Fast food restaurant with drive through 3,000 square feet

Figure 1: Project Location

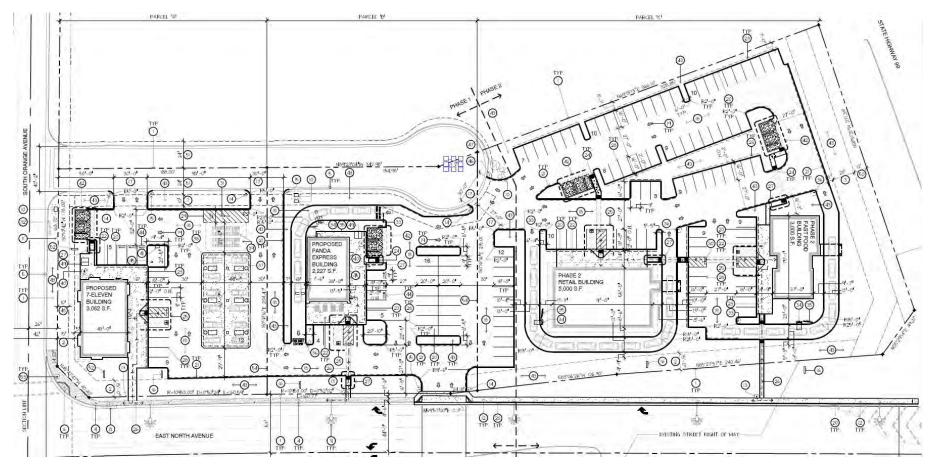


Figure 2: Site Plan

December 20, 2018 Mr. Neil Angelillo Page 4 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

APPLICABLE SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT REGULATIONS

The proposed project would be subject to the following the San Joaquin Valley Air Pollution Control District (District) regulations:

Rule 2010 – Permits Required. The purpose of this rule is to require any person constructing, altering, replacing or operating any source operation which emits, may emit, or may reduce emissions to obtain an Authority to Construct and a Permit to Operate. This rule also explains the posting requirements for a Permit to Operate and the illegality of a person willfully altering, defacing, forging, counterfeiting or falsifying any Permit to Operate.

Rule 2201 – New and Modified Stationary Source Review Rule. The purpose of this rule is to provide for the following: (1) The review of new and modified Stationary Sources of air pollution and to provide mechanisms including emission trade-offs by which Authorities to Construct such sources may be granted, without interfering with the attainment or maintenance of Ambient Air Quality Standards; and (2) No net increase in emissions above specified thresholds from new and modified Stationary Sources of all nonattainment pollutants and their precursors.

Rule 4102 – Nuisance. The purpose of this rule is to protect the health and safety of the public and applies to any source operation that emits or may emit air contaminants or other materials.

Rule 4601 – Architectural Coatings. The purpose of this rule is to limit Volatile Organic Compounds (VOC) emissions from architectural coatings. Emissions are reduced by limits on VOC content and providing requirements on coatings storage, cleanup, and labeling.

Rule 4621 – Gasoline Transfer into Stationary Storage Containers, Delivery Vessels, and Bulk Plants. The purpose of this rule is to limit VOC emissions from stationary storage containers, delivery vessels, and bulk plants and to provide the administrative requirements for determining compliance with this rule.

Rule 4641 – Cutback, Slow Cure, and Emulsified Asphalt, Paving and Maintenance Operations. The purpose of this rule is to limit VOC emissions from asphalt paving and maintenance operations. If asphalt paving will be used, then the paving operations will be subject to Rule 4641.

Regulation VIII – Fugitive PM₁₀ Prohibitions. Rule 8011-8081 are designed to reduce PM₁₀ emissions (predominantly dust/dirt) generated by human activity, including construction and demolition activities, road construction, bulk materials storage, paved and unpaved roads, carryout and trackout, etc. All development projects that involve soil disturbance are subject to at least one provision of the Regulation VIII series of rules.

Rule 9510 – Indirect Source Review. This rule reduces the impact of NO_x and PM_{10} emissions from growth on the Air Basin. The rule places application and emission reduction requirements on development projects meeting applicability criteria to reduce emissions through onsite mitigation, offsite District -administered projects, or a combination of the two. This project must comply with Rule 9510 because it would develop more than 2,000 square feet of commercial space.

December 20, 2018 Mr. Neil Angelillo Page 5 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

METHODOLOGY

The analysis followed the guidance presented by the District in its Guide for Assessing and Mitigating Air Quality Impacts (March 2015). The California Emissions Estimator Model (CalEEMod) version 2016.3.2 was used to estimate the criteria air pollutants from construction and operation of the project. The District's Prioritization Calculator was used to screen health risks.

CONSTRUCTION

The proposed project would be constructed in three phases with the first phase beginning in 2019 and the final phase ending completion in 2024. The following construction schedule was used to estimate construction emissions, see Table 1. Construction occurring any time after January 2019 would result in decreased emissions since emission factors for construction equipment decrease as the analysis year is pushed out due to increasing regulation, such as the California Air Resources Board (CARB) In-Use Off-Road Diesel-Fueled Fleets regulation requiring the use of cleaner construction equipment fleets. The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per CEQA guidelines.

Table 1: Construction Schedule

Phase	Construction Phase	Anticipated Phase Start Date	Anticipated Phase End Date	Total Number of Days
1	Site Preparation	2/5/2019	2/5/2019	2
Convenience	Site Grading	2/11/2019	2/11/2019	4
Market with Gasoline Station	Building Construction	2/12/2019	11/18/2019	200
and Panda	Paving	11/19/2019	12/2/2019	10
Express	Architectural Coating	12/3/2019	12/19/2019	10
2	Site Preparation	1/4/2021	1/5/2021	2
5,000 square foot	Site Grading	1/6/2021	1/11/2021	4
building	Building Construction	1/12/2021	10/18/2021	200
	Paving	10/19/2021	11/1/2021	10
	Architectural Coating	11/2/2021	11/15/2021	10
3	Site Preparation	1/8/2024	1/9/2024	2
3,000 square foot	Site Grading	1/10/2024	1/15/2024	4
building	Building Construction	1/16/2024	10/21/2024	200
	Paving	10/22/2024	11/4/2024	10
	Architectural Coating	11/5/2025	11/18/2024	10
Source: True North Pro	operties – start of construction	n schedule; CalEEMod defau	ılts for duration	

December 20, 2018 Mr. Neil Angelillo Page 6 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

OPERATIONS

Non-Stationary Sources

The proposed project would become operational in phases beginning in the year 2020 and would be completely built out in the year 2025. Trip generation information for the proposed project was derived from the Traffic Impact Study prepared by JLB Traffic Engineering, Inc. and the Institute of Traffic Engineers (ITE) Trip Generation Manual 10th Edition. Trip generation for the proposed project is shown in Table 2.

Land Use Type	6:		Trip Generation	
(ITE Land Use Type)	Size	Weekday	Saturday	Sunday
Convenience Market with gasoline Station (945) ¹	12 pumps	205.36	204.47	166.88
Panda Express (934) ²	2.27 ksf	470.95	616.12	472.58
Retail Building (934) ^{2, 3}	3.002 ksf	470.95	616.12	472.58
Retail Building (937)2,	1.998	820.38	673.64	421.82
Fast food Restaurant with Drive Through (934) ²	3 ksf	470.95	616.12	472.58

Table 2: Trip Generation Rate

Notes:

- 1. Daily rate from Traffic Impact Study prepared by JLB Traffic Engineering, Inc.; Saturday and Sunday from CalEEMod defaults (no ITE 10th edition rates for Saturday and Sunday)
- 2. Daily rates from Daily rate from Traffic Impact Study prepared by JLB Traffic Engineering, Inc.; Saturday and Sunday rates from ITE 10th Edition
- 3. Although the site plan shows the 5,000 square foot building as future retail, there is a drive through shown on the site plan, therefore the more conservative assumption of fast food restaurant with drive through was used for 3,002 square feet and the remaining 1,098 allocated to the ITE Land Use 937 for drive-through coffee shop/donut shop

The default fleet mix from CalEEMod overstates the number of trucks making deliveries to commercial/retail land uses. Stantec prepared an analysis of truck trip generation for similar land uses to identify a more accurate fleet mix for use in the project analysis. The tenants will include service providers such as fast-food restaurants and a convenience market. Separate fleet mixes for each land use were developed (see attached fleet mix revisions). In addition, a combined heavy-duty diesel truck estimate was prepared for the entire project site to reflect solid waste collection services. It was assumed that solid waste and recyclables would be collected 4 times per week. Based on the project's location near the commercial service provider of Mid-Valley Disposal and nearby transfer stations, the trip length was assumed to be 20 miles.

The default trip length in CalEEMod for customer trips (7.3 miles) was revised to reflect the location of the project near SR 99 and its proximity to major employment centers within an approximately 3-mile radius. This trip length is consistent with the findings in the addendum to the Traffic Impact Study. The primary, pass-by, and diverted trips from CalEEMod were revised to reflect the trip percentage estimates in the traffic impact study of 64 percent primary, 11 percent diverted, and 25 percent pass-by.

December 20, 2018 Mr. Neil Angelillo Page 7 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

Stationary Sources

The proposed project includes a gasoline dispensing facility which would be subject to District permitting requirements. The gasoline dispensing facility would need to apply for an Authority to Construct (ATC), Permit to Operate (PTO) and comply with Rule 4621. The facility will dispense up to 1.4 million gallons of gasoline annually. Notably, the facility will not include diesel fuel, therefore the only heavy-duty diesel fueled vehicles accessing the facility would be the tanker trucks unloading into the underground storage tanks.

The volatile organic compound (VOC) or reactive organic gases (ROG) estimate was derived from the emission factors in the District's Guidance for Air Dispersion Modeling (January 2007) based on the California Air Resources Board's 1997 report Gasoline Service Station Industrial Wide Risk Assessment Guidelines.

RESULTS

Construction

The proposed project's construction emissions in tons per year are shown in Table 3. The project's maximum daily emissions in pounds (lbs.) per day are shown in Table 4. As shown in Table 3, the project would not exceed the District's thresholds of significance for criteria air pollutants. Table 4 shows that the project would not exceed the District's screening threshold of 100 lbs. per day for requiring an ambient air quality analysis.

Based on the results, construction of the proposed project would not result in any significant impacts to air quality from a regional or localized perspective. Additionally, compliance with District Rule 9510 Indirect Source Review would further reduce NO_x and PM_{10} emissions through onsite measures or payment of fees to reduce emissions offsite.

Table 3: Summary of Construction-Generated Emissions of Criteria Air Pollutants – Unmitigated (Tons/Year)

Phase	Year	Emissions (Tons/Year)					
		ROG	NO _X	СО	SO _X	PM ₁₀	PM _{2.5}
1	2019	0.31	1.89	1.56	0.002	0.14	0.11
2	2021	0.25	1.55	1.55	0.002	0.10	0.08
3	2024	0.19	1.24	1.24	0.002	0.07	0.06
Significance	Thresholds	10	10	100	27	15	15
Any Year Ex Significance	ceed Thresholds?	No	No	No	No	No	No
Source: Stantec Consulting Services, Inc., CalEEMod 2016.3.2							

December 20, 2018 Mr. Neil Angelillo Page 8 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

Table 4: Summary of Construction-Generated Emissions of Criteria Air Pollutants – Unmitigated Maximum (Ibs./day)

Phase	Year	Emissions (lbs./day)					
		ROG	NOx	СО	SOx	PM ₁₀	PM _{2.5}
1	2019	10.69	19.51	14.80	0.028	3.56	2.16
2	2021	9.01	17.44	13.55	0.026	3.44	2.05
3	2024	6.33	11.86	13.05	0.026	3.16	1.79
Ambient Air (Screening Th	Quality Analysis reshold	100	100	100	100	100	100
Any Year Exc Thresholds?	ceed Screening	No	No	No	No	No	No
Source: Stante	ec Consulting Servi	ces, Inc., CalEEN	1od 2016.3.2				

Operational

The proposed project's long-term operational emissions are shown in Table 5 (annual) and Table 6 (daily). As shown in Table 5, the proposed project would not exceed the District's thresholds of significance. As shown in Table 6, the proposed project would not exceed 100 lbs. per day, thus an ambient air quality analysis is not required pursuant to District guidance.

Based on the results, operation of the proposed project would not result in any significant impacts to air quality from a regional or localized perspective. Additionally, compliance with District Rule 9510 Indirect Source Review would further reduce NO_x and PM_{10} emissions through onsite measures or payment of fees to reduce emissions offsite.

December 20, 2018 Mr. Neil Angelillo Page 9 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

Table 5: Summary of Operational Emissions of Criteria Air Pollutants – Unmitigated (Tons/Year)

Year	Component				sions /Year)		
		ROG	NOx	СО	SOx	PM ₁₀	PM _{2.5}
	Convenience Market w/gasoline Station	0.65	0.73	4.61	0.01	0.86	0.23
2020	Panda Express	0.30	0.35	2.15	0.00	0.40	0.11
	Refuse Collection	< 0.00	0.06	0.01	< 0.00	0.00	0.00
	Subtotal	0.95	1.14	6.77	0.01	1.26	0.34
2022	5,000 sf Building	0.70	0.79	5.03	0.01	1.21	0.33
2024	3,000 sf building	0.29	0.30	2.07	0.01	0.66	0.18
7	Total	1.94	2.23	13.87	0.03	3.13	0.85
Significance	Thresholds	10	10	100	27	15	15
Any Year Ex Significance	ceed Thresholds?	No	No	No	No	No	No
Does Project Exceed the S Thresholds?	Significance	No	No	No	No	No	No

Notes:

Project buildout totaled the emissions from early years and did not remodel the emissions estimate, the total project buildout would be less than the emissions shown due to cleaner mobile source vehicles in later years.

Source: Stantec Consulting Services, Inc., CalEEMod 2016.3.2

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

Table 6: Summary of Operational Emissions of Criteria Air Pollutants – Unmitigated (lbs./day)

Year	Component			Emis (lbs.	sions /day)		
		ROG	NOx	СО	SOx	PM ₁₀	PM _{2.5}
	Convenience Market w/gasoline Station	0.65	0.73	4.61	0.01	0.86	0.23
2020	Panda Express	0.30	0.35	2.15	0.00	0.40	0.11
	Refuse Collection	< 0.00	0.06	0.01	< 0.00	0.00	0.00
	Subtotal	0.95	1.14	6.77	0.01	1.26	0.34
2022	5,000 sf Building	4.05	5.39	34.68	0.08	8.09	2.21
2024	3,000 sf building	0.29	0.30	2.07	0.01	0.66	0.18
-	Γotal	11.00	14.85	93.58	0.20	20.62	5.63
Ambient Air Screening T	Quality Analysis hreshold	100	100	100	100	100	100
Any Year Ex Thresholds?	ceed Screening	No	No	No	No	No	No
Does Project Exceed Screen Thresholds?	eening	No	No	No	No	No	No

Notes:

Project buildout totaled the emissions from early years and did not remodel the emissions estimate, the total project buildout would be less than the emissions shown due to cleaner mobile source vehicles in later years.

Source: Stantec Consulting Services, Inc., CalEEMod 2016.3.2

Stationary Sources

Gasoline Dispensing Facility

- 1. Loading (Tank) = VOC = 0.84 lbs./1,000 gallons x 1.4 million gallons = 1,176 lbs.
- 2. Breathing (Tank) = VOC = 0.74 lbs./1,000 gallons x 1.4 million gallons = 1,036 lbs.
- 3. Refueling = VOC = 0.74 lbs./1,000 gallons x 1.4 million gallons = 1,036 lbs.
- 4. Spillage = VOC = 0.42 lbs./1,000 gallons x 1.4 million gallons = 588 lbs.

Total = 3,836 lbs. or 1.918 tons of VOC (less than the District thresholds of significance).

December 20, 2018 Mr. Neil Angelillo Page 11 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

HEALTH RISK PRIORITIZATION

Those who are sensitive to air pollution include children, the elderly, and persons with pre-existing respiratory or cardiovascular illness. For purposes of CEQA, the SJVAPCD considers a sensitive receptor a location that houses or attracts children, the elderly, people with illnesses, or others who are especially sensitive to the effects of air pollutants. Examples of sensitive receptors include hospitals, residences, convalescent facilities, and schools. The nearest sensitive receptor the project site are residences located approximately one-mile south at Central and North Avenues. The nearest worksite receptor is located approximately 100 feet west from the project site boundary on Orange Avenue.

The District recommended that a screening analysis be performed to determine if a refined Health Risk Assessment (HRA) should be performed. The District's recommended method for screening risks is by using its prioritization calculator based on the California Air Pollution Control Officers Facility Prioritization Guidelines (August 2016). The prioritization calculator will provide a score based on the emission potency method. The prioritization score is an indicator of a facility's potential risk. Scores of 10 or greater indicate that a refined HRA should be prepared because there is the potential for a significant health risk. Scores less than 10 indicate that the project's TAC emissions are not a high risk.

The various TACs that would be emitted from the project include: Benzene, Toluene, and Xylene from the gasoline dispensing facility and diesel engine exhaust from delivery vehicles to the project site.

The maximum prioritization score total is 2.51 to the nearest worksite receptor. This is less than the District recommended screening threshold of 10 for conducting a refined HRA. The maximum prioritization score for the nearest residential receptor is 0.00251.

Based on the score of 2.51, the proposed project would not result in a significant health risk and does not require a refined HRA.

LOCALIZED AIR QUALITY IMPACTS

Localized impacts to air quality are a possibility when criteria air pollutant emissions exceed 100 lbs. per day. Localized fugitive dust impacts are also a possibility where fugitive dust controls are not implemented. The proposed project would not exceed 100 lbs. per day during construction or operation, therefore potential localized air quality impacts would be less than significant. The proposed project would be required to comply with the District's Regulation VIII Fugitive Dust Prohibitions, which requires the preparation and implementation of a dust control plan or dust control notification. Under either scenario, construction of the project would be required to implement best management practices to control fugitive dust. Therefore, potential fugitive dust impacts would be less than significant.

December 20, 2018

Mr. Neil Angelillo Page 12 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

SUMMARY

Based on the analysis, the proposed project would not result in a significant impact to air quality based on the following results:

- The proposed project would not result in any exceedances of the District's significance thresholds.
- The proposed project does not exceed any screening thresholds for localized air quality impacts.
- The proposed project's prioritization score of 2.51 is less than the District's screening threshold of 10.
 This score indicates that the project would not result in a significant health risk to nearby offsite workers and the risk to the nearest residential receptors is reduced even further.
- The proposed project's stationary source emissions would not exceed the District's thresholds of significance. The proposed project would be required to obtain an ATC prior to constructing the gasoline dispensing facility and a PTO would be issued upon the District's confirmation that the facility was constructed in accordance with the conditions in the ATC.

Stantec Consulting Services Inc.

Elena Nuno

Senior Air Quality Scientist

Phone: 559.355.0580 elena.nuno@stantec.com

Attachments: CalEEMod Modeling Outputs

Fleet mix revisions
Prioritization Calculator

December 20, 2018 Mr. Neil Angelillo Page 13 of 13

Reference: Planning Application P18-02233 – North and 99 Project – 2999 South Orange Avenue

REFERENCES

California Air Pollution Control Officers. 2016. CAPCOA Air Toxic "Hot Spots" Program Facility Prioritization Guidelines. August. Website: http://www.capcoa.org/wp-content/uploads/2016/08/CAPCOA%20Prioritization%20Guidelines%20-%20August%202016%20FINAL.pdf. Accessed December 17, 2018.

California Air Pollution Control Officers. 1997. CAPCOA Air Toxic "Hot Spots" Program Gasoline Service Station Industrywide Risk Assessment Guidelines. Website: https://www.arb.ca.gov/ab2588/rrap-iwra/GasIWRA.pdf. Accessed December 18, 2018

JLB Traffic Engineering, Inc. 2018. Draft Traffic Impact Analysis Commercial Development. January.

JLB Traffic Engineering, Inc. 2018. Trip Generation Analysis for the Commercial Development located at the Northeast Corner of North Avenue and Orange Avenue in the City of Fresno. December

San Joaquin Valley Air Pollution Control District. 2015. Guide for Assessing and Mitigating Air Quality Impacts. March. Website:

http://www.valleyair.org/busind/pto/tox_resources/Modeling%20Guidance%20W_O%20Pic.pdf. Accessed December 17, 2018.

San Joaquin Valley Air Pollution Control District. 2007. Guidance for Air Dispersion Modeling. January. Website: http://www.valleyair.org/transportation/GAMAQI 3-19-15.pdf. Accessed December 17, 2018.

CALEEMOD

Construction Results

Page 1 of 1

Date: 12/17/2018 5:15 PM

99 and North Phase 1 - Construction Only - Fresno County, Annual

99 and North Phase 1 - Construction Only Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Strip Mall	5.29	1000sqft	0.12	5,289.00	0
Parking Lot	47.00	Space	0.42	18,800.00	0
Other Asphalt Surfaces	1.09	Acre	1.09	47,480.40	O
Other Non-Asphalt Surfaces	0.15	Acre	0.15	6,534.00	O

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45

Climate Zone 3 Operational Year 2020

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Table Name Column Name Default Value New Value	Table Name	
--	------------	--

tblConstructionPhase	PhaseEndDate	1/13/2020	12/16/2019
tblConstructionPhase	PhaseEndDate	12/16/2019	11/18/2019
tblConstructionPhase	PhaseEndDate	3/11/2019	2/11/2019
tblConstructionPhase	PhaseEndDate	12/30/2019	12/2/2019
tblConstructionPhase	PhaseEndDate	3/5/2019	2/5/2019
tblConstructionPhase	PhaseStartDate	12/31/2019	12/3/2019
tblConstructionPhase	PhaseStartDate	3/12/2019	2/12/2019
tblConstructionPhase	PhaseStartDate	3/6/2019	2/6/2019
tblConstructionPhase	PhaseStartDate	12/17/2019	11/19/2019
tblConstructionPhase	PhaseStartDate	3/2/2019	2/4/2019

2.0 Emissions Summary

2.1 Overall Construction Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tons	s/yr							MT	/yr		
2019	0.3132	1.8907	1.5569	2.97E-03	0.0508	0.0987	0.1494	0.0176	0.0951	0.1126						
Maximum	0.3132	1.8907	1.5569	2.9700e- 003	0.0508	0.0987	0.1494	0.0176	0.0951	0.1126						

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2019	0.3132	1.8907	1.5569	2.9700e- 003	0.0422	0.0987	0.1408	0.0131	0.0951	0.1082						
Maximum	0.3132	1.8907	1.5569	2.9700e- 003	0.0422	0.0987	0.1408	0.0131	0.0951	0.1082						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	16.94	0.00	5.75	25.13	0.00	3.91	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	2-4-2019	5-3-2019	0.6407	0.6407
2	5-4-2019	8-3-2019	0.6672	0.6672
3	8-4-2019	9-30-2019	0.4206	0.4206
		Highest	0.6672	0.6672

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	2/4/2019	2/5/2019	5	2	
2	Grading	Grading	2/6/2019	2/11/2019	5	4	
3	Building Construction	Building Construction	2/12/2019	11/18/2019	5	200	
4	Paving	Paving	11/19/2019	12/2/2019	5	10	
5	Architectural Coating	Architectural Coating	12/3/2019	12/16/2019	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.66

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 7,934; Non-Residential Outdoor: 2,645; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Site Preparation	Graders	1	8.00	187	0.41
Paving	Pavers	1	6.00	130	0.42
Paving	Rollers	1	7.00	80	0.38

Grading	Rubber Tired Dozers	1	6.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Paving	Paving Equipment	1	8.00	132	0.36
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
Building Construction	Welders	3	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	32.00	13.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	6.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Site Preparation - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					5.8000e- 003	0.0000	5.8000e- 003	2.9500e- 003	0.0000	2.9500e- 003						
Off-Road	1.7100e- 003	0.0195	7.8900e- 003	2.0000e- 005		8.8000e- 004	8.8000e- 004		8.1000e- 004	8.1000e- 004						

Ī	Total	1.7100e-	0.0195	7.8900e-	2.0000e-	5.8000e-	8.8000e-	6.6800e-	2.9500e-	8.1000e-	3.7600e-			
		003		003	005	003	004	003	003	004	003			l
														1

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	-/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	4.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005						
Total	4.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					2.6100e- 003	0.0000	2.6100e- 003	1.3300e- 003	0.0000	1.3300e- 003						
Off-Road	1.7100e- 003	0.0195	7.8900e- 003	2.0000e- 005		8.8000e- 004	8.8000e- 004		8.1000e- 004	8.1000e- 004						
Total	1.7100e- 003	0.0195	7.8900e- 003	2.0000e- 005	2.6100e- 003	8.8000e- 004	3.4900e- 003	1.3300e- 003	8.1000e- 004	2.1400e- 003						

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		

Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Worker	4.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005			
Total	4.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005			

3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					9.8300e- 003	0.0000	9.8300e- 003	5.0500e- 003	0.0000	5.0500e- 003						
Off-Road	2.8400e- 003	0.0321	0.0132	3.0000e- 005		1.4700e- 003	1.4700e- 003		1.3600e- 003	1.3600e- 003						
Total	2.8400e- 003	0.0321	0.0132	3.0000e- 005	9.8300e- 003	1.4700e- 003	0.0113	5.0500e- 003	1.3600e- 003	6.4100e- 003						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						
Total	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					4.4200e- 003	0.0000	4.4200e- 003	2.2700e- 003	0.0000	2.2700e- 003						
Off-Road	2.8400e- 003	0.0321	0.0132	3.0000e- 005		1.4700e- 003	1.4700e- 003		1.3600e- 003	1.3600e- 003						
Total	2.8400e- 003	0.0321	0.0132	3.0000e- 005	4.4200e- 003	1.4700e- 003	5.8900e- 003	2.2700e- 003	1.3600e- 003	3.6300e- 003						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						
Total	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						

3.4 Building Construction - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		

Off-Road	0.2272	1.5980	1.3487	2.2000e- 003	0.0916	0.0916	0.0885	0.0885			
Total	0.2272	1.5980	1.3487	2.2000e- 003	0.0916	0.0916	0.0885	0.0885			

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	5.9800e- 003	0.1758	0.0300	3.7000e- 004	8.6200e- 003	1.2700e- 003	9.8900e- 003	2.4900e- 003	1.2200e- 003	3.7100e- 003						
Worker	0.0151	9.9500e- 003	0.0997	2.5000e- 004	0.0256	1.7000e- 004	0.0258	6.8000e- 003	1.6000e- 004	6.9600e- 003						
Total	0.0211	0.1857	0.1297	6.2000e- 004	0.0342	1.4400e- 003	0.0356	9.2900e- 003	1.3800e- 003	0.0107						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.2272	1.5980	1.3487	2.2000e- 003		0.0916	0.0916		0.0885	0.0885						
Total	0.2272	1.5980	1.3487	2.2000e- 003		0.0916	0.0916		0.0885	0.0885						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	5.9800e- 003	0.1758	0.0300	3.7000e- 004	8.6200e- 003	1.2700e- 003	9.8900e- 003	2.4900e- 003	1.2200e- 003	3.7100e- 003						
Worker	0.0151	9.9500e- 003	0.0997	2.5000e- 004	0.0256	1.7000e- 004	0.0258	6.8000e- 003	1.6000e- 004	6.9600e- 003						
Total	0.0211	0.1857	0.1297	6.2000e- 004	0.0342	1.4400e- 003	0.0356	9.2900e- 003	1.3800e- 003	0.0107						

3.5 Paving - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	4.5200e- 003	0.0459	0.0445	7.0000e- 005		2.6100e- 003	2.6100e- 003		2.4100e- 003	2.4100e- 003						
Paving	1.9800e- 003					0.0000	0.0000		0.0000	0.0000						
Total	6.5000e- 003	0.0459	0.0445	7.0000e- 005		2.6100e- 003	2.6100e- 003		2.4100e- 003	2.4100e- 003						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		

Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Worker	3.1000e- 004	2.0000e- 004	2.0300e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004			
Total	3.1000e- 004	2.0000e- 004	2.0300e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004			

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	4.5200e- 003	0.0459	0.0445	7.0000e- 005		2.6100e- 003	2.6100e- 003		2.4100e- 003	2.4100e- 003						
Paving	1.9800e- 003					0.0000	0.0000		0.0000	0.0000						
Total	6.5000e- 003	0.0459	0.0445	7.0000e- 005		2.6100e- 003	2.6100e- 003		2.4100e- 003	2.4100e- 003						

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	3.1000e- 004	2.0000e- 004	2.0300e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004						
Total	3.1000e- 004	2.0000e- 004	2.0300e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004						

3.6 Architectural Coating - 2019 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	-/yr		
Archit. Coating	0.0520					0.0000	0.0000		0.0000	0.0000						
Off-Road	1.3300e- 003	9.1800e- 003	9.2100e- 003	1.0000e- 005		6.4000e- 004	6.4000e- 004		6.4000e- 004	6.4000e- 004						
Total	0.0533	9.1800e- 003	9.2100e- 003	1.0000e- 005		6.4000e- 004	6.4000e- 004		6.4000e- 004	6.4000e- 004						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	1.4000e- 004	9.0000e- 005	9.3000e- 004	0.0000	2.4000e- 004	0.0000	2.4000e- 004	6.0000e- 005	0.0000	7.0000e- 005						
Total	1.4000e- 004	9.0000e- 005	9.3000e- 004	0.0000	2.4000e- 004	0.0000	2.4000e- 004	6.0000e- 005	0.0000	7.0000e- 005						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e

Category					tons/yr						MT	Г/уг	
Archit. Coating	0.0520				0.00	000 0	0.0000	0.0000	0.0000				
Off-Road	1.3300e- 003	9.1800e- 003	9.2100e- 003	1.0000e- 005	6.400 00	00e- 6.4 4		6.4000e- 004		 			
Total	0.0533	9.1800e- 003	9.2100e- 003	1.0000e- 005	6.400		4000e- 004	6.4000e- 004	6.4000e- 004				

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	1.4000e- 004	9.0000e- 005	9.3000e- 004	0.0000	2.4000e- 004	0.0000	2.4000e- 004	6.0000e- 005	0.0000	7.0000e- 005						
Total	1.4000e- 004	9.0000e- 005	9.3000e- 004	0.0000	2.4000e- 004	0.0000	2.4000e- 004	6.0000e- 005	0.0000	7.0000e- 005						

Page 1 of 1

Date: 12/17/2018 5:16 PM

99 and North Phase 1 - Construction Only - Fresno County, Winter

99 and North Phase 1 - Construction Only Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Strip Mall	5.29	1000sqft	0.12	5,289.00	0
Parking Lot	47.00	Space	0.42	18,800.00	0
Other Asphalt Surfaces	1.09	Acre	1.09	47,480.40	O
Other Non-Asphalt Surfaces	0.15	Acre	0.15	6,534.00	0

1.2 Other Project Characteristics

Urbanization Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) 45

Climate Zone Operational Year 2020

Utility Company Pacific Gas & Electric Company

CO2 Intensity 641.35 **CH4 Intensity** 0.029 **N2O Intensity** 0.006 (lb/MWhr)

(lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value

tblConstructionPhase	PhaseEndDate	1/13/2020	12/16/2019
tblConstructionPhase	PhaseEndDate	12/16/2019	11/18/2019
tblConstructionPhase	PhaseEndDate	3/11/2019	2/11/2019
tblConstructionPhase	PhaseEndDate	12/30/2019	12/2/2019
tblConstructionPhase	PhaseEndDate	3/5/2019	2/5/2019
tblConstructionPhase	PhaseStartDate	12/31/2019	12/3/2019
tblConstructionPhase	PhaseStartDate	3/12/2019	2/12/2019
tblConstructionPhase	PhaseStartDate	3/6/2019	2/6/2019
tblConstructionPhase	PhaseStartDate	12/17/2019	11/19/2019
tblConstructionPhase	PhaseStartDate	3/2/2019	2/4/2019

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2019	10.6890	19.5093	14.8007	0.0281	5.8653	0.9304	6.7481	2.9711	0.8984	3.7833						
Maximum	10.6890	19.5093	14.8007	0.0281	5.8653	0.9304	6.7481	2.9711	0.8984	3.7833						

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	ay		
2019	10.6890	19.5093	14.8007	0.0281	2.6755	0.9304	3.5583	1.3466	0.8984	2.1588						
Maximum	10.6890	19.5093	14.8007	0.0281	2.6755	0.9304	3.5583	1.3466	0.8984	2.1588						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.38	0.00	47.27	54.68	0.00	42.94	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	2/4/2019	2/5/2019	5	2	
2	Grading	Grading	2/6/2019	2/11/2019	5	4	
3	Building Construction	Building Construction	2/12/2019	11/18/2019	5	200	
4	Paving	Paving	11/19/2019	12/2/2019	5	10	
5	Architectural Coating	Architectural Coating	12/3/2019	12/16/2019	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.66

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 7,934; Non-Residential Outdoor: 2,645; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Site Preparation	Graders	1	8.00	187	0.41
Paving	Pavers	1	6.00	130	0.42
Paving	Rollers	1	7.00	80	0.38
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41

ů .	Paving Equipment	1	8.00	132	0.36
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
Building Construction	Welders	3	8.00		0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	32.00	13.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	6.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Site Preparation - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Fugitive Dust					5.7996	0.0000	5.7996	2.9537	0.0000	2.9537						
Off-Road	1.7123	19.4821	7.8893	0.0172		0.8824	0.8824		0.8118	0.8118						
Total	1.7123	19.4821	7.8893	0.0172	5.7996	0.8824	6.6819	2.9537	0.8118	3.7655						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178						
Total	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Fugitive Dust					2.6098	0.0000	2.6098	1.3292	0.0000	1.3292						
Off-Road	1.7123	19.4821	7.8893	0.0172		0.8824	0.8824		0.8118	0.8118						
Total	1.7123	19.4821	7.8893	0.0172	2.6098	0.8824	3.4922	1.3292	0.8118	2.1409						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Worker	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178			
Total	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178			

3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Fugitive Dust					4.9143	0.0000	4.9143	2.5256	0.0000	2.5256						
Off-Road	1.4197	16.0357	6.6065	0.0141		0.7365	0.7365		0.6775	0.6775						
Total	1.4197	16.0357	6.6065	0.0141	4.9143	0.7365	5.6507	2.5256	0.6775	3.2032						

Unmitigated Construction Off-Site

		ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
(Category					lb/d	day							lb/d	ay		
	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
	Worker	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178						
	Total	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178						

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					2.2114	0.0000	2.2114	1.1365	0.0000	1.1365						
Off-Road	1.4197	16.0357	6.6065	0.0141		0.7365	0.7365		0.6775	0.6775						
Total	1.4197	16.0357	6.6065	0.0141	2.2114	0.7365	2.9479	1.1365	0.6775	1.8141						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178						
Total	0.0399	0.0273	0.2463	6.1000e- 004	0.0657	4.2000e- 004	0.0661	0.0174	3.9000e- 004	0.0178						

3.4 Building Construction - 2019 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Off-Road	2.2721	15.9802	13.4870	0.0220		0.9158	0.9158		0.8846	0.8846						

Total	2.2721	15.9802	13.4870	0.0220	0.9158	0.9158	0.8846	0.8846			

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0614	1.7549	0.3285	3.6500e- 003	0.0881	0.0129	0.1010	0.0254	0.0123	0.0377						
Worker	0.1597	0.1090	0.9851	2.4300e- 003	0.2629	1.7000e- 003	0.2646	0.0697	1.5600e- 003	0.0713						
Total	0.2211	1.8639	1.3136	6.0800e- 003	0.3510	0.0146	0.3655	0.0951	0.0139	0.1090						

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	2.2721	15.9802	13.4870	0.0220		0.9158	0.9158		0.8846	0.8846						
Total	2.2721	15.9802	13.4870	0.0220		0.9158	0.9158		0.8846	0.8846						

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0614	1.7549	0.3285	3.6500e- 003	0.0881	0.0129	0.1010	0.0254	0.0123	0.0377						
Worker	0.1597	0.1090	0.9851	2.4300e- 003	0.2629	1.7000e- 003	0.2646	0.0697	1.5600e- 003	0.0713						
Total	0.2211	1.8639	1.3136	6.0800e- 003	0.3510	0.0146	0.3655	0.0951	0.0139	0.1090						

3.5 Paving - 2019 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Off-Road	0.9038	9.1743	8.9025	0.0135		0.5225	0.5225		0.4815	0.4815						
Paving	0.3956					0.0000	0.0000		0.0000	0.0000						
Total	1.2995	9.1743	8.9025	0.0135		0.5225	0.5225		0.4815	0.4815						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Worker	0.0649	0.0443	0.4002	9.9000e- 004	0.1068	6.9000e- 004	0.1075	0.0283	6.3000e- 004	0.0290			
Total	0.0649	0.0443	0.4002	9.9000e- 004	0.1068	6.9000e- 004	0.1075	0.0283	6.3000e- 004	0.0290			

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Off-Road	0.9038	9.1743	8.9025	0.0135		0.5225	0.5225		0.4815	0.4815						
Paving	0.3956					0.0000	0.0000		0.0000	0.0000						
Total	1.2995	9.1743	8.9025	0.0135		0.5225	0.5225		0.4815	0.4815						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0649	0.0443	0.4002	9.9000e- 004	0.1068	6.9000e- 004	0.1075	0.0283	6.3000e- 004	0.0290						
Total	0.0649	0.0443	0.4002	9.9000e- 004	0.1068	6.9000e- 004	0.1075	0.0283	6.3000e- 004	0.0290						

3.6 Architectural Coating - 2019 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	10.3926					0.0000	0.0000		0.0000	0.0000						
Off-Road	0.2664	1.8354	1.8413	2.9700e- 003		0.1288	0.1288		0.1288	0.1288						
Total	10.6590	1.8354	1.8413	2.9700e- 003		0.1288	0.1288		0.1288	0.1288						

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0299	0.0204	0.1847	4.6000e- 004	0.0493	3.2000e- 004	0.0496	0.0131	2.9000e- 004	0.0134						
Total	0.0299	0.0204	0.1847	4.6000e- 004	0.0493	3.2000e- 004	0.0496	0.0131	2.9000e- 004	0.0134						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Archit. Coating	10.3926					0.0000	0.0000		0.0000	0.0000						

Off-Road	0.2664	1.8354	1.8413	2.9700e- 003	0.1288	0.1288	 0.1288	0.1288	 		
Total	10.6590	1.8354	1.8413	2.9700e- 003	0.1288	0.1288	0.1288	0.1288			

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0299	0.0204	0.1847	4.6000e- 004	0.0493	3.2000e- 004	0.0496	0.0131	2.9000e- 004	0.0134						
Total	0.0299	0.0204	0.1847	4.6000e- 004	0.0493	3.2000e- 004	0.0496	0.0131	2.9000e- 004	0.0134						

Page 1 of 1

Date: 12/17/2018 6:14 PM

99 and North Phase 2 - Construction Only - Fresno County, Annual

99 and North Phase 2 - Construction Only Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Strip Mall	5.00	1000sqft	0.11	5,000.00	0
Parking Lot	36.00	Space	0.32	14,400.00	0
Other Asphalt Surfaces	0.51	Acre	0.51	22,215.60	0
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	0

1.2 Other Project Characteristics

Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) 45 Urbanization

Climate Zone Operational Year 2022

Utility Company Pacific Gas & Electric Company

CO2 Intensity 641.35 **CH4 Intensity** 0.029 **N2O Intensity** 0.006

(lb/MWhr)

(lb/MWhr)

(lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Table Name Column Name Default Value New Va	llue
---	------

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2021	0.2461	1.5512	1.4304	2.7100e- 003	0.0378	0.0734	0.1112	0.0140	0.0707	0.0847						
Maximum	0.2461	1.5512	1.4304	2.7100e- 003	0.0378	0.0734	0.1112	0.0140	0.0707	0.0847						

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2021	0.2461	1.5512	1.4304	2.7100e- 003	0.0292	0.0734	0.1026	9.6200e- 003	0.0707	0.0803						
Maximum	0.2461	1.5512	1.4304	2.7100e- 003	0.0292	0.0734	0.1026	9.6200e- 003	0.0707	0.0803						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	22.73	0.00	7.74	31.38	0.00	5.20	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	1-4-2021	4-3-2021	0.5306	0.5306
2	4-4-2021	7-3-2021	0.5362	0.5362
3	7-4-2021	9-30-2021	0.5244	0.5244
		Highest	0.5362	0.5362

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	1/4/2021	1/5/2021	5	2	
2	Grading	Grading	1/6/2021	1/11/2021	5	4	
3	Building Construction	Building Construction	1/12/2021	10/18/2021	5	200	
4	Paving	Paving	10/19/2021	11/1/2021	5	10	
5	Architectural Coating	Architectural Coating	11/2/2021	11/15/2021	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 0.99

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 7,500; Non-Residential Outdoor: 2,500; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Site Preparation	Graders	1	8.00	187	0.41
Paving	Pavers	1	6.00	130	0.42
Paving	Rollers	1	7.00	80	0.38
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Paving	Paving Equipment	1	8.00	132	0.36
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
Building Construction	Welders	3	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	20.00	8.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	4.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Site Preparation - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					5.8000e- 003	0.0000	5.8000e- 003	2.9500e- 003	0.0000	2.9500e- 003						
Off-Road	1.5600e- 003	0.0174	7.5600e- 003	2.0000e- 005		7.7000e- 004	7.7000e- 004		7.0000e- 004	7.0000e- 004						
Total	1.5600e- 003	0.0174	7.5600e- 003	2.0000e- 005	5.8000e- 003	7.7000e- 004	6.5700e- 003	2.9500e- 003	7.0000e- 004	3.6500e- 003						

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					ton	s/yr						МТ	-/yr	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
Worker	3.0000e- 005		2.0000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005		0.0000	2.0000e- 005				
Total	3.0000e- 005	2.0000e- 005	2.0000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005				

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton				MT	/yr						
Fugitive Dust					2.6100e- 003	0.0000	2.6100e- 003	1.3300e- 003	0.0000	1.3300e- 003						
Off-Road	1.5600e- 003	0.0174	7.5600e- 003	2.0000e- 005		7.7000e- 004	7.7000e- 004		7.0000e- 004	7.0000e- 004						
Total	1.5600e- 003	0.0174	7.5600e- 003	2.0000e- 005	2.6100e- 003	7.7000e- 004	3.3800e- 003	1.3300e- 003	7.0000e- 004	2.0300e- 003						

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	3.0000e- 005	2.0000e- 005	2.0000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005						

Tetal	2 0000-	2.0000-	2 0000-	0.0000	C 0000a	0.0000	C 0000a	2.0000	0.0000	2.0000-			
Total	3.0000e-	2.0000e-	2.0000e-	0.0000	6.0000e-	0.0000	6.0000e-	2.0000e-	0.0000	2.0000e-			
	005	005	004		005		005	005		005			
	003	003	004		003		003	003		003			

3.3 Grading - 2021 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					9.8300e- 003	0.0000	9.8300e- 003	5.0500e- 003	0.0000	5.0500e- 003						
Off-Road	2.5800e- 003	0.0287	0.0127	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1700e- 003	1.1700e- 003						
Total	2.5800e- 003	0.0287	0.0127	3.0000e- 005	9.8300e- 003	1.2800e- 003	0.0111	5.0500e- 003	1.1700e- 003	6.2200e- 003						

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	6.0000e- 005	4.0000e- 005	4.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						
Total	6.0000e- 005	4.0000e- 005	4.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					4.4200e- 003	0.0000	4.4200e- 003	2.2700e- 003	0.0000	2.2700e- 003						
Off-Road	2.5800e- 003	0.0287	0.0127	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1700e- 003	1.1700e- 003						
Total	2.5800e- 003	0.0287	0.0127	3.0000e- 005	4.4200e- 003	1.2800e- 003	5.7000e- 003	2.2700e- 003	1.1700e- 003	3.4400e- 003						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	6.0000e- 005	4.0000e- 005	4.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						
Total	6.0000e- 005	4.0000e- 005	4.0000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						

3.4 Building Construction - 2021

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.1813	1.3636	1.2899	2.2000e- 003		0.0684	0.0684		0.0661	0.0661		_			_	
Total	0.1813	1.3636	1.2899	2.2000e- 003		0.0684	0.0684		0.0661	0.0661						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	2.4200e- 003	0.0901	0.0137	2.2000e- 004	5.3000e- 003	2.4000e- 004	5.5400e- 003	1.5300e- 003	2.3000e- 004	1.7600e- 003						
Worker	7.9800e- 003	4.8700e- 003	0.0504	1.5000e- 004	0.0160	1.0000e- 004	0.0161	4.2500e- 003	9.0000e- 005	4.3400e- 003						
Total	0.0104	0.0949	0.0642	3.7000e- 004	0.0213	3.4000e- 004	0.0216	5.7800e- 003	3.2000e- 004	6.1000e- 003						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.1813	1.3636	1.2899	2.2000e- 003		0.0684	0.0684		0.0661	0.0661						
Total	0.1813	1.3636	1.2899	2.2000e- 003		0.0684	0.0684		0.0661	0.0661						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	2.4200e- 003	0.0901	0.0137	2.2000e- 004	5.3000e- 003	2.4000e- 004	5.5400e- 003	1.5300e- 003	2.3000e- 004	1.7600e- 003						
Worker	7.9800e- 003	4.8700e- 003	0.0504	1.5000e- 004	0.0160	1.0000e- 004	0.0161	4.2500e- 003	9.0000e- 005	4.3400e- 003						3
Total	0.0104	0.0949	0.0642	3.7000e- 004	0.0213	3.4000e- 004	0.0216	5.7800e- 003	3.2000e- 004	6.1000e- 003						

3.5 Paving - 2021

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	3.8700e- 003	0.0387	0.0443	7.0000e- 005		2.0800e- 003	2.0800e- 003		1.9100e- 003	1.9100e- 003						
Paving	1.0900e- 003					0.0000	0.0000		0.0000	0.0000						
Total	4.9600e- 003	0.0387	0.0443	7.0000e- 005		2.0800e- 003	2.0800e- 003		1.9100e- 003	1.9100e- 003						

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						

Worker	2.6000e-	1.6000e-	1.6400e-	0.0000	5.2000e-	0.0000	5.2000e-	1.4000e-	0.0000	1.4000e-			
	004	004	003		004		004	004		004			
Total	2.6000e-	1.6000e-	1.6400e-	0.0000	5.2000e-	0.0000	5.2000e-	1.4000e-	0.0000	1.4000e-			
	004	004	003		004		004	004		004			

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	-/yr		
Off-Road	3.8700e- 003	0.0387	0.0443	7.0000e- 005		2.0800e- 003	2.0800e- 003		1.9100e- 003	1.9100e- 003						
Paving	1.0900e- 003					0.0000	0.0000		0.0000	0.0000						
Total	4.9600e- 003	0.0387	0.0443	7.0000e- 005		2.0800e- 003	2.0800e- 003		1.9100e- 003	1.9100e- 003						

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	2.6000e- 004	1.6000e- 004	1.6400e- 003	0.0000	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004						
Total	2.6000e- 004	1.6000e- 004	1.6400e- 003	0.0000	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004						

3.6 Architectural Coating - 2021 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0439					0.0000	0.0000		0.0000	0.0000						
Off-Road	1.0900e- 003	7.6300e- 003	9.0900e- 003	1.0000e- 005		4.7000e- 004	4.7000e- 004		4.7000e- 004	4.7000e- 004						
Total	0.0449	7.6300e- 003	9.0900e- 003	1.0000e- 005		4.7000e- 004	4.7000e- 004		4.7000e- 004	4.7000e- 004						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						
Total	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						

		ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
	Category					tons	s/yr							MT	/yr		
I	Archit. Coating	0.0439					0.0000	0.0000		0.0000	0.0000						

ľ	Off-Road	1.0900e-	7.6300e-	9.0900e-	1.0000e-	4.700	e- 4.7000e	-	4.7000e-	4.7000e-			
		003	003	003	005	004	004		004	004			
	Total	0.0449	7.6300e-	9.0900e-	1.0000e-	4.700	e- 4.7000e	-	4.7000e-	4.7000e-			
			003	003	005	004	004		004	004			

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						
Total	8.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						

Page 1 of 1

Date: 12/17/2018 6:12 PM

99 and North Phase 2 - Construction Only - Fresno County, Winter

99 and North Phase 2 - Construction Only Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Strip Mall	5.00	1000sqft	0.11	5,000.00	0
Parking Lot	36.00	Space	0.32	14,400.00	0
Other Asphalt Surfaces	0.51	Acre	0.51	22,215.60	O
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	O

1.2 Other Project Characteristics

Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) 45 Urbanization

Climate Zone Operational Year 2022

Utility Company Pacific Gas & Electric Company

CO2 Intensity 641.35 **CH4 Intensity** 0.029 **N2O Intensity** 0.006 (lb/MWhr) (lb/MWhr)

(lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Table Name Column Name Default Value New Value	
--	--

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
2021	9.0063	17.4416	13.5472	0.0257	5.8653	0.7658	6.6311	2.9711	0.7045	3.6756						
Maximum	9.0063	17.4416	13.5472	0.0257	5.8653	0.7658	6.6311	2.9711	0.7045	3.6756						

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2021	9.0063	17.4416	13.5472	0.0257	2.6755	0.7658	3.4413	1.3466	0.7045	2.0511						
Maximum	9.0063	17.4416	13.5472	0.0257	2.6755	0.7658	3.4413	1.3466	0.7045	2.0511						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.38	0.00	48.10	54.68	0.00	44.20	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	1/4/2021	1/5/2021	5	2	
2	Grading	Grading	1/6/2021	1/11/2021	5	4	
3		Building Construction	1/12/2021	10/18/2021	5	200	

4	Paving	Paving		11/1/2021	5	10	
5	Architectural Coating		11/2/2021	11/15/2021	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 0.99

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 7,500; Non-Residential Outdoor: 2,500; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Site Preparation	Graders	1	8.00	187	0.41
Paving	Pavers	1	6.00	130	0.42
Paving	Rollers	1	7.00	80	0.38
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Paving	Paving Equipment	1	8.00	132	0.36
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
Building Construction	Welders	3	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment	•	•	0 1	•				Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle	Vehicle
									Class	Class

Site Preparation	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	20.00	8.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	4.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Site Preparation - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					5.7996	0.0000	5.7996	2.9537	0.0000	2.9537						
Off-Road	1.5558	17.4203	7.5605	0.0172		0.7654	0.7654		0.7041	0.7041			D			0
Total	1.5558	17.4203	7.5605	0.0172	5.7996	0.7654	6.5650	2.9537	0.7041	3.6578						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						

I ""	Worker	0.0337	0.0213	0.1984	5.7000e-	0.0657	4.0000e-	0.0661	0.0174	3.7000e-	0.0178	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
					004		004			004					
Г	Total	0.0337	0.0213	0.1984	5.7000e-	0.0657	4.0000e-	0.0661	0.0174	3.7000e-	0.0178				
					004		004			004					

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Fugitive Dust					2.6098	0.0000	2.6098	1.3292	0.0000	1.3292						
Off-Road	1.5558	17.4203	7.5605	0.0172		0.7654	0.7654		0.7041	0.7041						
Total	1.5558	17.4203	7.5605	0.0172	2.6098	0.7654	3.3752	1.3292	0.7041	2.0333						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0337	0.0213	0.1984	5.7000e- 004	0.0657	4.0000e- 004	0.0661	0.0174	3.7000e- 004	0.0178						
Total	0.0337	0.0213	0.1984	5.7000e- 004	0.0657	4.0000e- 004	0.0661	0.0174	3.7000e- 004	0.0178						

3.3 Grading - 2021
<u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					4.9143	0.0000	4.9143	2.5256	0.0000	2.5256						
Off-Road	1.2884	14.3307	6.3314	0.0141		0.6379	0.6379		0.5869	0.5869						
Total	1.2884	14.3307	6.3314	0.0141	4.9143	0.6379	5.5522	2.5256	0.5869	3.1125						

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0337	0.0213	0.1984	5.7000e- 004	0.0657	4.0000e- 004	0.0661	0.0174	3.7000e- 004	0.0178						
Total	0.0337	0.0213	0.1984	5.7000e- 004	0.0657	4.0000e- 004	0.0661	0.0174	3.7000e- 004	0.0178						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Fugitive Dust					2.2114	0.0000	2.2114	1.1365	0.0000	1.1365						

Off-Road	1.2884	14.3307	6.3314	0.0141		0.6379	0.6379		0.5869	0.5869			
Total	1.2884	14.3307	6.3314	0.0141	2.2114	0.6379	2.8493	1.1365	0.5869	1.7234			

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0337	0.0213	0.1984	5.7000e- 004	0.0657	4.0000e- 004	0.0661	0.0174	3.7000e- 004	0.0178						
Total	0.0337	0.0213	0.1984	5.7000e- 004	0.0657	4.0000e- 004	0.0661	0.0174	3.7000e- 004	0.0178						

3.4 Building Construction - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	1.8125	13.6361	12.8994	0.0221		0.6843	0.6843		0.6608	0.6608						
Total	1.8125	13.6361	12.8994	0.0221		0.6843	0.6843		0.6608	0.6608						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0250	0.8976	0.1518	2.2100e- 003	0.0542	2.4700e- 003	0.0567	0.0156	2.3700e- 003	0.0180						
Worker	0.0842	0.0534	0.4961	1.4200e- 003	0.1643	1.0000e- 003	0.1653	0.0436	9.2000e- 004	0.0445						
Total	0.1092	0.9510	0.6478	3.6300e- 003	0.2185	3.4700e- 003	0.2220	0.0592	3.2900e- 003	0.0625						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Off-Road	1.8125	13.6361	12.8994	0.0221		0.6843	0.6843		0.6608	0.6608						
Total	1.8125	13.6361	12.8994	0.0221		0.6843	0.6843		0.6608	0.6608						

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						

Vendor	0.0250	0.8976	0.1518	2.2100e- 003	0.0542	2.4700e- 003	0.0567	0.0156	2.3700e- 003	0.0180			
Worker	0.0842	0.0534	0.4961	1.4200e- 003	0.1643	1.0000e- 003	0.1653	0.0436	9.2000e- 004	0.0445			
Total	0.1092	0.9510	0.6478	3.6300e- 003	0.2185	3.4700e- 003	0.2220	0.0592	3.2900e- 003	0.0625			

3.5 Paving - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Off-Road	0.7739	7.7422	8.8569	0.0135		0.4153	0.4153		0.3830	0.3830						
Paving	0.2175					0.0000	0.0000		0.0000	0.0000						
Total	0.9913	7.7422	8.8569	0.0135		0.4153	0.4153		0.3830	0.3830			-			

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0547	0.0347	0.3224	9.2000e- 004	0.1068	6.5000e- 004	0.1074	0.0283	6.0000e- 004	0.0289						
Total	0.0547	0.0347	0.3224	9.2000e- 004	0.1068	6.5000e- 004	0.1074	0.0283	6.0000e- 004	0.0289						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.7739	7.7422	8.8569	0.0135		0.4153	0.4153		0.3830	0.3830						
Paving	0.2175					0.0000	0.0000		0.0000	0.0000						
Total	0.9913	7.7422	8.8569	0.0135		0.4153	0.4153		0.3830	0.3830						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0547	0.0347	0.3224	9.2000e- 004	0.1068	6.5000e- 004	0.1074	0.0283	6.0000e- 004	0.0289						
Total	0.0547	0.0347	0.3224	9.2000e- 004	0.1068	6.5000e- 004	0.1074	0.0283	6.0000e- 004	0.0289						

3.6 Architectural Coating - 2021 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Archit. Coating	8.7706					0.0000	0.0000		0.0000	0.0000						

Off-Road	0.2189	1.5268	1.8176	2.9700e-	0.0941	0.0941	0.0941	0.0941			
				003							
Total	8.9895	1.5268	1.8176	2.9700e-	0.0941	0.0941	0.0941	0.0941			
				003							

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0168	0.0107	0.0992	2.8000e- 004	0.0329	2.0000e- 004	0.0331	8.7200e- 003	1.8000e- 004	8.9000e- 003						
Total	0.0168	0.0107	0.0992	2.8000e- 004	0.0329	2.0000e- 004	0.0331	8.7200e- 003	1.8000e- 004	8.9000e- 003						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Archit. Coating	8.7706					0.0000	0.0000		0.0000	0.0000						
Off-Road	0.2189	1.5268	1.8176	2.9700e- 003		0.0941	0.0941		0.0941	0.0941						
Total	8.9895	1.5268	1.8176	2.9700e- 003		0.0941	0.0941		0.0941	0.0941						

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	0.0168	0.0107	0.0992	2.8000e- 004	0.0329	2.0000e- 004	0.0331	8.7200e- 003	1.8000e- 004	8.9000e- 003						
Total	0.0168	0.0107	0.0992	2.8000e- 004	0.0329	2.0000e- 004	0.0331	8.7200e- 003	1.8000e- 004	8.9000e- 003						

Page 1 of 1

Date: 12/17/2018 6:22 PM

99 and North Phase 4 - Construction Only - Fresno County, Annual

99 and North Phase 4 - Construction Only Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Strip Mall	3.00	1000sqft	0.07	3,000.00	0
Parking Lot	51.00	Space	0.46	20,400.00	0
Other Asphalt Surfaces	0.45	Acre	0.45	19,602.00	0
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	O

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45

Climate Zone 3 Operational Year 2025

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Table Name Column Name Default Value New Value	Table Name	
--	------------	--

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2024	0.1894	1.2431	1.3751	2.6900e- 003	0.0386	0.0482	0.0868	0.0142	0.0464	0.0606						
Maximum	0.1894	1.2431	1.3751	2.6900e- 003	0.0386	0.0482	0.0868	0.0142	0.0464	0.0606						

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2024	0.1894	1.2431	1.3751	2.6900e- 003	0.0300	0.0482	0.0782	9.8300e- 003	0.0464	0.0562						
Maximum	0.1894	1.2431	1.3751	2.6900e- 003	0.0300	0.0482	0.0782	9.8300e- 003	0.0464	0.0562						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	22.26	0.02	9.91	30.92	0.00	7.26	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	1-8-2024	4-7-2024	0.4255	0.4255
2	4-8-2024	7-7-2024	0.4311	0.4311
3	7-8-2024	9-30-2024	0.4027	0.4027
		Highest	0.4311	0.4311

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date End Date		Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	1/8/2024	1/9/2024	5	2	
2	Grading	Grading	1/10/2024	1/15/2024	5	4	
3	Building Construction	Building Construction	1/16/2024	10/21/2024	5	200	
4	Paving	Paving	10/22/2024	11/4/2024	5	10	
5	Architectural Coating	Architectural Coating	11/5/2024	11/18/2024	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.07

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 4,500; Non-Residential Outdoor: 1,500; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Site Preparation	Graders	1	8.00	187	0.41
Paving	Pavers	1	6.00	130	
Paving	Rollers	1	7.00	80	0.00
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	8.00	97	
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Paving	Paving Equipment	1	8.00	132	0.36
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
		-C	a		

Building Construction	Moldore.	<u> </u>	2 !	Ω ∩∩≣	46	0.45
Building Construction	VVEIGEIS		J:	8.00≣	40	0.43
•		.	:	=		
	i	• • • • • • • • • • • • • • • • • • •	:	=	=	

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	21.00	8.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	4.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Site Preparation - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	tons/yr									tons/yr MT/yr									
Fugitive Dust					5.8000e- 003	0.0000	5.8000e- 003	2.9500e- 003	0.0000	2.9500e- 003									
Off-Road	1.1100e- 003	0.0118	6.6300e- 003	2.0000e- 005		4.8000e- 004	4.8000e- 004		4.4000e- 004	4.4000e- 004									
Total	1.1100e- 003	0.0118	6.6300e- 003	2.0000e- 005	5.8000e- 003	4.8000e- 004	6.2800e- 003	2.9500e- 003	4.4000e- 004	3.3900e- 003									

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					ton	s/yr						МТ	-/yr	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
Worker	3.0000e- 005	1.0000e- 005	1.5000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005		0.0000	2.0000e- 005				
Total	3.0000e- 005	1.0000e- 005	1.5000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005				

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	-/yr		
Fugitive Dust					2.6100e- 003	0.0000	2.6100e- 003	1.3300e- 003	0.0000	1.3300e- 003						
Off-Road	1.1100e- 003	0.0118	6.6300e- 003	2.0000e- 005		4.8000e- 004	4.8000e- 004		4.4000e- 004	4.4000e- 004						
Total	1.1100e- 003	0.0118	6.6300e- 003	2.0000e- 005	2.6100e- 003	4.8000e- 004	3.0900e- 003	1.3300e- 003	4.4000e- 004	1.7700e- 003						

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	3.0000e- 005	1.0000e- 005	1.5000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005						

Total	3.0000e-	1.0000e-	1.5000e-	0.0000	6.0000e-	0.0000	6.0000e-	2.0000e-	0.0000	2.0000e-			
	005	005	004		005		005	005		005			

3.3 Grading - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					9.8300e- 003	0.0000	9.8300e- 003	5.0500e- 003	0.0000	5.0500e- 003						
Off-Road	1.8300e- 003	0.0195	0.0111	3.0000e- 005		8.0000e- 004	8.0000e- 004		7.4000e- 004	7.4000e- 004						
Total	1.8300e- 003	0.0195	0.0111	3.0000e- 005	9.8300e- 003	8.0000e- 004	0.0106	5.0500e- 003	7.4000e- 004	5.7900e- 003						

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	5.0000e- 005	3.0000e- 005	3.1000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						
Total	5.0000e- 005	3.0000e- 005	3.1000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					4.4200e- 003	0.0000	4.4200e- 003	2.2700e- 003	0.0000	2.2700e- 003						
Off-Road	1.8300e- 003	0.0195	0.0111	3.0000e- 005		8.0000e- 004	8.0000e- 004		7.4000e- 004	7.4000e- 004						
Total	1.8300e- 003	0.0195	0.0111	3.0000e- 005	4.4200e- 003	8.0000e- 004	5.2200e- 003	2.2700e- 003	7.4000e- 004	3.0100e- 003						

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	5.0000e- 005	3.0000e- 005	3.1000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						
Total	5.0000e- 005	3.0000e- 005	3.1000e- 004	0.0000	1.3000e- 004	0.0000	1.3000e- 004	3.0000e- 005	0.0000	3.0000e- 005						

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.1420	1.1064	1.2517	2.2100e- 003		0.0451	0.0451		0.0435	0.0435						
Total	0.1420	1.1064	1.2517	2.2100e- 003		0.0451	0.0451		0.0435	0.0435						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	1.5000e- 003	0.0662	9.8100e- 003	2.2000e- 004	5.3000e- 003	6.0000e- 005	5.3700e- 003	1.5300e- 003	6.0000e- 005	1.5900e- 003						
Worker	6.7800e- 003	3.6700e- 003	0.0405	1.4000e- 004	0.0168	1.0000e- 004	0.0169	4.4600e- 003	9.0000e- 005	4.5500e- 003						
Total	8.2800e- 003	0.0698	0.0504	3.6000e- 004	0.0221	1.6000e- 004	0.0223	5.9900e- 003	1.5000e- 004	6.1400e- 003						

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.1420	1.1064	1.2517	2.2100e- 003		0.0451	0.0451		0.0435	0.0435						
Total	0.1420	1.1064	1.2517	2.2100e- 003		0.0451	0.0451		0.0435	0.0435						

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	1.5000e- 003	0.0662	9.8100e- 003	2.2000e- 004	5.3000e- 003	6.0000e- 005	5.3700e- 003	1.5300e- 003	6.0000e- 005	1.5900e- 003						
Worker	6.7800e- 003	3.6700e- 003	0.0405	1.4000e- 004	0.0168	1.0000e- 004	0.0169	4.4600e- 003	9.0000e- 005	4.5500e- 003						
Total	8.2800e- 003	0.0698	0.0504	3.6000e- 004	0.0221	1.6000e- 004	0.0223	5.9900e- 003	1.5000e- 004	6.1400e- 003						

3.5 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	3.0900e- 003	0.0293	0.0441	7.0000e- 005		1.4100e- 003	1.4100e- 003		1.3000e- 003	1.3000e- 003						
Paving	1.1900e- 003					0.0000	0.0000		0.0000	0.0000						
Total	4.2800e- 003	0.0293	0.0441	7.0000e- 005		1.4100e- 003	1.4100e- 003		1.3000e- 003	1.3000e- 003						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						

Worker	2.1000e-	1.1000e-	1.2500e-	0.0000	5.2000e-	0.0000	5.2000e-	1.4000e-	0.0000	1.4000e-			
	004	004	003		004		004	004		004			
Total	2.1000e-	1.1000e-	1.2500e-	0.0000	5.2000e-	0.0000	5.2000e-	1.4000e-	0.0000	1.4000e-			
	004	004	003		004		004	004		004			

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	3.0900e- 003	0.0293	0.0441	7.0000e- 005		1.4100e- 003	1.4100e- 003		1.3000e- 003	1.3000e- 003						
Paving	1.1900e- 003					0.0000	0.0000		0.0000	0.0000						
Total	4.2800e- 003	0.0293	0.0441	7.0000e- 005		1.4100e- 003	1.4100e- 003		1.3000e- 003	1.3000e- 003			-			

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	2.1000e- 004	1.1000e- 004	1.2500e- 003	0.0000	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004						
Total	2.1000e- 004	1.1000e- 004	1.2500e- 003	0.0000	5.2000e- 004	0.0000	5.2000e- 004	1.4000e- 004	0.0000	1.4000e- 004						

3.6 Architectural Coating - 2024 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0307					0.0000	0.0000		0.0000	0.0000						
Off-Road	9.0000e- 004	6.0900e- 003	9.0500e- 003	1.0000e- 005		3.0000e- 004	3.0000e- 004		3.0000e- 004	3.0000e- 004						
Total	0.0316	6.0900e- 003	9.0500e- 003	1.0000e- 005		3.0000e- 004	3.0000e- 004		3.0000e- 004	3.0000e- 004						

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	6.0000e- 005	3.0000e- 005	3.9000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						
Total	6.0000e- 005	3.0000e- 005	3.9000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Archit. Coating	0.0307					0.0000	0.0000		0.0000	0.0000						

-	Off-Road	9.0000e-	6.0900e-	9.0500e-	1.0000e-	3.0000		3.0000e-	3.0000e-			
		004	003	003	005	004	004	004	004			
Г	Total	0.0316	6.0900e-	9.0500e-	1.0000e-	3.0000	- 3.0000e-	3.0000e-	3.0000e-			
1			003	003	005	004	004	004	004			

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
Worker	6.0000e- 005	3.0000e- 005	3.9000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						
Total	6.0000e- 005	3.0000e- 005	3.9000e- 004	0.0000	1.6000e- 004	0.0000	1.6000e- 004	4.0000e- 005	0.0000	4.0000e- 005						

Page 1 of 1

Date: 12/17/2018 6:24 PM

99 and North Phase 3 - Construction Only - Fresno County, Winter

99 and North Phase 3 - Construction Only Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Strip Mall	3.00	1000sqft	0.07	3,000.00	0
Parking Lot	51.00	Space	0.46	20,400.00	0
Other Asphalt Surfaces	0.45	Acre	0.45	19,602.00	O
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	O

1.2 Other Project Characteristics

Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) Urbanization 45

Climate Zone Operational Year 2025

Utility Company Pacific Gas & Electric Company

CO2 Intensity 641.35 **CH4 Intensity** 0.029 **N2O Intensity** 0.006

(lb/MWhr)

(lb/MWhr)

(lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Table Name Column Name Default Value New Value	
--	--

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
2024	6.3251	11.8560	13.0204	0.0255	5.8653	0.4826	6.3479	2.9711	0.4440	3.4151						
Maximum	6.3251	11.8560	13.0204	0.0255	5.8653	0.4826	6.3479	2.9711	0.4440	3.4151						

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	day		
2024	6.3251	11.8560	13.0204	0.0255	2.6755	0.4826	3.1582	1.3466	0.4440	1.7906						
Maximum	6.3251	11.8560	13.0204	0.0255	2.6755	0.4826	3.1582	1.3466	0.4440	1.7906						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.38	0.00	50.25	54.68	0.00	47.57	0.00	0.00	0.00	0.00	0.00	0.00

CALEEMOD

Operational Results

Page 1 of 1

Date: 12/19/2018 11:16 AM

99 and North - Operational - Convenience Market w Gas Station - Fresno County, Annual

99 and North - Operational - Convenience Market w Gas Station Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Non-Asphalt Surfaces	0.97	Acre	0.97	42,253.20	0
Parking Lot	47.00	Space	0.72	18,800.00	0
Convenience Market With Gas Pumps	12.00	Pump	0.04	1,694.10	0

1.2 Other Project Characteristics

 Urbanization
 Urban
 Wind Speed (m/s)
 2.2
 Precipitation Freq (Days)
 45

Climate Zone 3 Operational Year 2020

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan with parking from Panda Express

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Traffic Study and ITE 10th Edition does not have Sat or Sun trip rate the defaults were used. Estimate of 3 miles for service area for Fleet Mix - Revised fleet mix based on estimated truck trips

Table Name	Column Name	Default Value	New Value

tblFleetMix	HHD	0.12	8.3400e-004
tblFleetMix	LDA	0.48	0.59
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	4.9970e-003	0.00
tblFleetMix	MHD	0.03	8.3400e-004
tblLandUse	LotAcreage	0.42	0.72
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	21.00	11.00
tblVehicleTrips	PB_TP	65.00	25.00
tblVehicleTrips	PR_TP	14.00	64.00
tblVehicleTrips	WD_TR	542.60	205.36

2.0 Emissions Summary

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.0131	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	1.0000e- 004	8.9000e- 004	7.5000e- 004	1.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005						
Mobile	0.6337	0.7248	4.6071	9.3500e- 003	0.8478	8.5100e- 003	0.8563	0.2263	7.9100e- 003	0.2342						
Waste						0.0000	0.0000		0.0000	0.0000			@			
Water						0.0000	0.0000		0.0000	0.0000						
Total	0.6469	0.7257	4.6084	9.3600e- 003	0.8478	8.5800e- 003	0.8563	0.2263	7.9800e- 003	0.2343						

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.0131	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	1.0000e- 004	8.9000e- 004	7.5000e- 004	1.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005						
Mobile	0.6337	0.7248	4.6071	9.3500e- 003	0.8478	8.5100e- 003	0.8563	0.2263	7.9100e- 003	0.2342						
Waste						0.0000	0.0000		0.0000	0.0000						
Water		()		***************************************		0.0000	0.0000		0.0000	0.0000	P)				D
Total	0.6469	0.7257	4.6084	9.3600e- 003	0.8478	8.5800e- 003	0.8563	0.2263	7.9800e- 003	0.2343						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

		ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Cate	gory		tons/yr											MT	/yr		
Mitiga	ated	0.6337	0.7248	4.6071	9.3500e- 003	0.8478	8.5100e- 003	0.8563	0.2263	7.9100e- 003	0.2342						

_												 	 	
	Unmitigated	0 6337	0.7248	4.6071	9 35000-	0.8478	8.5100e-	0.8563	0.2263	7 91000-	0.2342		•	
	Ommigated	0.6337	0.7240	4.0071	3.00000	0.8478	0.51006-	0.0000	0.2203	7.31006-	0.2342		i	<i>i</i>
					003		003			003			İ	
					003		003			003			•	<i>i</i>
										= =			Ē	4

4.2 Trip Summary Information

	Aver	age Daily Trip I	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Convenience Market With Gas Pumps	2,464.32	2,453.64	2002.56	2,274,952	2,274,952
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Total	2,464.32	2,453.64	2,002.56	2,274,952	2,274,952

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Convenience Market With Gas		3.00	7.30	0.80	80.20	19.00	64	11	25
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Convenience Market With Gas	0.593367	0.040439	0.207844	0.127212	0.018382	0.000000	0.000834	0.000834	0.002369	0.001675	0.005261	0.001115	0.000667
	0.481390	0.032808	0.168621	0.127212	0.018382	0.004997	0.032622	0.122881	0.002369	0.001675	0.005261	0.001115	0.000667
Parking Lot	0.481390	0.032808	0.168621	0.127212	0.018382	0.004997	0.032622	0.122881	0.002369	0.001675	0.005261	0.001115	0.000667

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000						
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000						
NaturalGas Mitigated	1.0000e- 004	8.9000e- 004	7.5000e- 004	1.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005		D				
NaturalGas Unmitigated	1.0000e- 004	8.9000e- 004	7.5000e- 004	1.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005						

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	-/yr		
Convenience Market With Gas	18126.9	004	8.9000e- 004	7.5000e- 004	1.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005						
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Total		1.0000e- 004	8.9000e- 004	7.5000e- 004	1.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005						

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Convenience Market With Gas		1.0000e- 004	8.9000e- 004	7.5000e- 004	1.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005						
Other Non-Asphalt Surfaces		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						

Parking Lot	0	0.0000	0.0000	0.0000	0.0000	 0.0000	0.0000	 0.0000	0.0000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Total		1.0000e-	8.9000e-	7.5000e-	1.0000e-	7.0000e-	7.0000e-	7.0000e-	7.0000e-					
		004	004	004	005	005	005	005	005					

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/уг	
Convenience Market With Gas	13806.9				
Other Non-Asphalt Surfaces	0				
Parking Lot	6580				
Total					

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M٦	Г/уг	
Convenience Market With Gas	13806.9				
Other Non-Asphalt Surfaces	0				
Parking Lot	6580				
Total					

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.0131	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Unmitigated	0.0131	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	2.4500e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0106			***************************************		0.0000	0.0000		0.0000	0.0000						
Landscaping	5.0000e- 005	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0131	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	2.4500e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0106					0.0000	0.0000		0.0000	0.0000						
Landscaping	5.0000e- 005	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0131	1.0000e- 005	5.5000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated				

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M٦	Г/уг	

Convenience Market With Gas	0.0769109		
Other Non-Asphalt Surfaces			
Parking Lot	0/0		
Total			

Mitigated

	Indoor/Out door Use	Total CO2 CF	1 4	N2O	CO2e
Land Use	Mgal		MT	-/yr	
Convenience	0.125486 /				
Market With Gas	0.0769109		I		
Other Non-Asphalt	0/0				
Surfaces					
Parking Lot	0/0				
Total					

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Mitigated				

Unmitigated		
ogatou		

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2 CH4	N2O	CO2e
Land Use	tons	V	IT/yr	
Other Non-Asphalt Surfaces	0			
Parking Lot	0			
Total				

Mitigated

	Waste Disposed	Total CO2 CH4	N2O	CO2e
Land Use	tons	M	Γ/yr	
Other Non-Asphalt Surfaces	0			
Parking Lot	0			
Total				

9.0 Operational Offroad

ı	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

Page 1 of 1

Date: 12/19/2018 11:18 AM

99 and North - Operational - Convenience Market w Gas Station - Fresno County, Winter

99 and North - Operational - Convenience Market w Gas Station Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Non-Asphalt Surfaces	0.97	Acre	0.97	42,253.20	0
Parking Lot	47.00	Space	0.72	18,800.00	0
Convenience Market With Gas Pumps	12.00	Pump	0.04	1,694.10	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45

Climate Zone 3 Operational Year 2020

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan with parking from Panda Express

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Traffic Study and ITE 10th Edition does not have Sat or Sun trip rate the defaults were used. Estimate of 3 miles for service area for Fleet Mix - Revised fleet mix based on estimated truck trips

	Table Name	Column Name	Default Value	New Value
--	------------	-------------	---------------	-----------

tblFleetMix	HHD	0.12	8.3400e-004
tblFleetMix	LDA	0.48	0.59
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	4.9970e-003	0.00
tblFleetMix	MHD	0.03	8.3400e-004
tblLandUse	LotAcreage	0.42	0.72
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	21.00	11.00
tblVehicleTrips	PB_TP	65.00	25.00
tblVehicleTrips	PR_TP	14.00	64.00
tblVehicleTrips	WD_TR	542.60	205.36

2.0 Emissions Summary

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Area	0.0719	6.0000e- 005	6.1600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Energy	5.4000e- 004	4.8700e- 003	4.0900e- 003	3.0000e- 005		3.7000e- 004	3.7000e- 004		3.7000e- 004	3.7000e- 004						
Mobile	3.2302	4.3396	27.9923	0.0511	4.9201	0.0482	4.9683	1.3104	0.0448	1.3552						
Total	3.3027	4.3446	28.0025	0.0511	4.9201	0.0486	4.9687	1.3104	0.0452	1.3556						

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaus PM2.5		Bio	o- CO2 NBi	o- CO2 T	Fotal CO2	CH4	N2O	CO2e
Category					lb/	day								lb/d	lay		
Area	0.0719	6.0000e- 005	6.1600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e 005	- 2.0000 005) -						
Energy	5.4000e- 004	4.8700e- 003	4.0900e- 003	3.0000e- 005	•	3.7000e- 004	3.7000e- 004		3.7000e 004	- 3.7000 004)- 					·	
Mobile	3.2302	4.3396	27.9923	0.0511	4.9201	0.0482	4.9683	1.3104	0.0448	1.3552	2						
Total	3.3027	4.3446	28.0025	0.0511	4.9201	0.0486	4.9687	1.3104	0.0452	1.3556							
	ROG	N	Ox C	co s					_		PM2.5 Total	Bio- CO2	NBio-C	CO2 Tot		H4 1	N20 CO
Percent Reduction	0.00	0	.00 0	.00 0	.00 0	.00 0	.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.0	0 0.	00 (0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d				lb/d	ay						
Mitigated	3.2302	4.3396	27.9923	0.0511	4.9201	0.0482	4.9683	1.3104	0.0448	1.3552						
Unmitigated	3.2302	4.3396	27.9923	0.0511	4.9201	0.0482	4.9683	1.3104	0.0448	1.3552						

4.2 Trip Summary Information

	Aver	age Daily Trip I	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Convenience Market With Gas Pumps	2,464.32	2,453.64	2002.56	2,274,952	2,274,952
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		

Total	2.464.32	2,453.64	2.002.56	2.274.952	2.274.952

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Convenience Market With Gas	9.50	3.00	7.30	0.80	80.20	19.00	64	11	25
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Convenience Market With Gas	0.593367	0.040439	0.207844	0.127212	0.018382	0.000000	0.000834	0.000834	0.002369	0.001675	0.005261	0.001115	0.000667
Other Non-Asphalt Surfaces	0.481390	0.032808	0.168621	0.127212	0.018382	0.004997	0.032622	0.122881	0.002369	0.001675	0.005261	0.001115	0.000667
Parking Lot	0.481390	0.032808	0.168621	0.127212	0.018382	0.004997	0.032622	0.122881	0.002369	0.001675	0.005261	0.001115	0.000667

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
NaturalGas Mitigated	5.4000e- 004	4.8700e- 003	4.0900e- 003	3.0000e- 005		3.7000e- 004	3.7000e- 004		3.7000e- 004	3.7000e- 004						
NaturalGas Unmitigated	5.4000e- 004	4.8700e- 003	4.0900e- 003	3.0000e- 005		3.7000e- 004	3.7000e- 004		3.7000e- 004	3.7000e- 004						

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	ay		
Convenience	49.6627	5.4000e-	4.8700e-	4.0900e-	3.0000e-		3.7000e-	3.7000e-		3.7000e-	3.7000e-						
Market With Gas		004	003	003	005		004	004		004	004						
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Total		5.4000e- 004	4.8700e- 003	4.0900e- 003	3.0000e- 005		3.7000e- 004	3.7000e- 004		3.7000e- 004	3.7000e- 004						

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Convenience	0.0496627	5.4000e-	4.8700e-	4.0900e-	3.0000e-		3.7000e-	3.7000e-		3.7000e-	3.7000e-						
Market With Gas		004	003	003	005		004	004		004	004						
Other Non-Asphalt	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Surfaces																	
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Total		5.4000e- 004	4.8700e- 003	4.0900e- 003	3.0000e- 005		3.7000e- 004	3.7000e- 004		3.7000e- 004	3.7000e- 004						

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Mitigated	0.0719	6.0000e- 005	6.1600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Unmitigated	0.0719	6.0000e- 005	6.1600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						

6.2 Area by SubCategory Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		lb/day											lb/d	lay		
Architectural Coating	0.0134					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0579					0.0000	0.0000		0.0000	0.0000						
Landscaping	5.8000e- 004	6.0000e- 005	6.1600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Total	0.0719	6.0000e- 005	6.1600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	ay		

Architectural Coating	0.0134				0.0000	0.0000	0.0000	0.0000			
Consumer Products	0.0579				0.0000	0.0000	0.0000	0.0000			
Landscaping	5.8000e- 004	6.0000e- 005	6.1600e- 003	0.0000	2.0000e- 005	2.0000e- 005	2.0000e- 005	2.0000e- 005			
Total	0.0719	6.0000e- 005	6.1600e- 003	0.0000	2.0000e- 005	2.0000e- 005	2.0000e- 005	2.0000e- 005			

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

I	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Ī	Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

Page 1 of 1

Date: 12/19/2018 11:23 AM

99 and North - Operational - Panda Express - Fresno County, Annual

99 and North - Operational - Panda Express Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Fast Food Restaurant with Drive Thru	2.23	1000sqft	0.05	2,227.00	0

1.2 Other Project Characteristics

 Urbanization
 Urban
 Wind Speed (m/s)
 2.2
 Precipitation Freq (Days)
 45

 Climate Zone
 3
 Operational Year
 2020

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Traffic Study and ITE 10th Edition for Sat or Sun trip rate. Estimate of 3 miles for service area for customers. Trip % from TIS

Fleet Mix - Revised fleet mix based on estimated truck trips

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.12	2.5700e-004
tblFleetMix	LDA	0.48	0.59

tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	4.9970e-003	1.7200e-004
tblFleetMix	MHD	0.03	9.4400e-004
tblLandUse	LandUseSquareFeet	2,230.00	2,227.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	21.00	11.00
tblVehicleTrips	PB_TP	50.00	25.00
tblVehicleTrips	PR_TP	29.00	64.00
tblVehicleTrips	ST_TR	722.03	616.12
tblVehicleTrips	SU_TR	542.72	472.58
tblVehicleTrips	WD_TR	496.12	470.95

2.0 Emissions Summary

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		tons/yr										МТ/уг					
Area	0.0103	0.0000	2.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000							
Energy	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003							
Mobile	0.2908	0.3235	2.1343	4.3500e- 003	0.3970	3.9500e- 003	0.4010	0.1060	3.6700e- 003	0.1096							
Waste						0.0000	0.0000		0.0000	0.0000							
Water						0.0000	0.0000		0.0000	0.0000							
Total	0.3036	0.3465	2.1536	4.4900e- 003	0.3970	5.7000e- 003	0.4027	0.1060	5.4200e- 003	0.1114							

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2	2e
Category					tor	ns/yr				•			МТ	Г/уг			
Area	0.0103	0.0000	2.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000							
Energy	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003							
Mobile	0.2908	0.3235	2.1343	4.3500e- 003	0.3970	3.9500e- 003	0.4010	0.1060	3.6700e- 003	0.1096							
Waste						0.0000	0.0000		0.0000	0.0000							
Water						0.0000	0.0000		0.0000	0.0000							
Total	0.3036	0.3465	2.1536	4.4900e- 003	0.3970	5.7000e- 003	0.4027	0.1060	5.4200e- 003	0.1114		-					
	ROG	N	Ox C	co s	_	-			-		2.5 Bio- tal	CO2 NBio	-CO2 Tot		14	N20	C
Percent	0.00	0	00 0	00 0	00 0	00 0	00 0	00 0	00 0	00 0	00 0	00 0	00 0.0	00 0.0	00	0.00	٥

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.2908	0.3235	2.1343	4.3500e- 003	0.3970	3.9500e- 003	0.4010	0.1060	3.6700e- 003	0.1096						

_				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	y	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Unmitigated	0.2908	0 3235	2.1343	4.3500e-	0.3970	3.9500e-	0.4010	0.1060	3.6700e-	0.1096				
	Orinningated	0.2300	0.0200	2.10-0	7.00000	0.0070	0.00000	0.4010	0.1000	0.07000	0.1000				
					003		003			002			Ī	i .	
					003		003			003			1		

4.2 Trip Summary Information

	Aver	age Daily Trip Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday Sunday	Annual VMT	Annual VMT
Fast Food Restaurant with Drive Thru	1,050.22	1,373.95 1053.85	1,065,459	1,065,459
Total	1,050.22	1,373.95 1,053.85	1,065,459	1,065,459

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Fast Food Restaurant with	9.50	3.00	7.30	2.20	78.80	19.00	64	11	25

4.4 Fleet Mix

	Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
F	ast Food Restaurant with Drive	0.593575	0.040454	0.207917	0.127212	0.018382	0.000172	0.000944	0.000257	0.002369	0.001675	0.005261	0.001115	0.000667
	Thru													

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000						
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000						

NaturalGas Mitigated	2.5300e- 003	0.0230	0.0193	1.4000e- 004	1.7500e- 003	1.7500e- 003	1.7500e- 003	1.7500e- 003			
NaturalGas Unmitigated	2.5300e- 003	0.0230	0.0193	1.4000e- 004	 1.7500e- 003	1.7500e- 003	 1.7500e- 003	1.7500e- 003	 		

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Fast Food Restaurant with	468605	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003						
Total		2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003						

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Fast Food Restaurant with	468605	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003						
Total		2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003					-	

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Γ/yr	
Fast Food Restaurant with	64516.2				
Total					

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	√yr	
Fast Food Restaurant with	64516.2				
Total					

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Mitigated	0.0103	0.0000	2.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000						

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 yaraaaaaaaaaaaaaaaa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	yaaraaaaaaaaaaaaa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Unmitigated	0.0103	0.0000	2.0000e-	0.0000		0.0000	0.0000	0.0000	0.0000						į l
Orminigatoa	0.0100	0.0000	2.00000	0.0000		0.0000	0.0000	0.0000	0.0000				•		# 8
			005				Ī						Ī	i .	<i>i</i>
			000				1						1		<i>i</i>
							•						•		<i>i</i>

6.2 Area by SubCategory Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e				
SubCategory	tons/yr												MT/yr							
Architectural Coating	1.5500e- 003					0.0000	0.0000		0.0000	0.0000										
Consumer Products	8.7000e- 003					0.0000	0.0000		0.0000	0.0000										
Landscaping	0.0000	0.0000	2.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000										
Total	0.0103	0.0000	2.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000										

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr												MT	/yr		
Architectural Coating	1.5500e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	8.7000e- 003					0.0000	0.0000		0.0000	0.0000						
Landscaping	0.0000	0.0000	2.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0103	0.0000	2.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000						

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated				

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	√yr	
Fast Food	0.67688 /				
Restaurant with	0.0432051				
Total					

<u>Mitigated</u>

Indoor/Out	Total CO2	CH4	N2O	CO2e
door Use				

Land Use	Mgal	MT	/yr
Fast Food Restaurant with	0.67688 / 0.0432051		
Total			

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

Total CO2	CH4	N2O	CO2e
	MT	/yr	

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2 CH4	N2O	CO2e
Land Use	tons	M	T/yr	
Fast Food Restaurant with	25.69			
Total				

Mitigated

	Waste Disposed	Total CO2 CH4	N2O	CO2e
Land Use	tons	M	IT/yr	
Fast Food Restaurant with	25.69			
Total				

9.0 Operational Offroad

Equipment Type Number Hours/Day Days/Year Horse Power Load Factor Fuel Type	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
---	----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

Equipment Type Num	ber
--------------------	-----

11.0 Vegetation

Page 1 of 1

Date: 12/19/2018 11:24 AM

99 and North - Operational - Panda Express - Fresno County, Winter

99 and North - Operational - Panda Express Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Fast Food Restaurant with Drive Thru	2.23	1000sqft	0.05	2,227.00	0

1.2 Other Project Characteristics

 Urbanization
 Urban
 Wind Speed (m/s)
 2.2
 Precipitation Freq (Days)
 45

 Climate Zone
 3
 Operational Year
 2020

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Traffic Study and ITE 10th Edition for Sat or Sun trip rate. Estimate of 3 miles for service area for customers. Trip % from TIS

Fleet Mix - Revised fleet mix based on estimated truck trips

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.12	2.5700e-004
tblFleetMix	LDA	0.48	0.59

tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	4.9970e-003	1.7200e-004
tblFleetMix	MHD	0.03	9.4400e-004
tblLandUse	LandUseSquareFeet	2,230.00	2,227.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	21.00	11.00
tblVehicleTrips	PB_TP	50.00	25.00
tblVehicleTrips	PR_TP	29.00	64.00
tblVehicleTrips	ST_TR	722.03	616.12
tblVehicleTrips	SU_TR	542.72	472.58
tblVehicleTrips	WD_TR	496.12	470.95

2.0 Emissions Summary

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Area	0.0562	0.0000	2.3000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	0.0139	0.1259	0.1057	7.6000e- 004		9.5700e- 003	9.5700e- 003		9.5700e- 003	9.5700e- 003						
Mobile	1.8058	2.3663	15.7726	0.0290	2.8070	0.0273	2.8342	0.7476	0.0253	0.7729						
Total	1.8759	2.4922	15.8785	0.0297	2.8070	0.0368	2.8438	0.7476	0.0349	0.7825						

Mitigated Operational

	ROG	NOx	СО	SO2	Fugi PM		Exhaust PM10	PM10 Total	Fugit PM2		chaust M2.5	PM2.9 Total		Bio- CO2	NBio- CO2	? Total CC	2 C	CH4	N2O (CO2e
Category						lb/da	ay									II	o/day			
Area	0.0562	0.0000	2.3000e- 004	0.000)		0.0000	0.0000		0	.0000	0.000	0							
Energy	0.0139	0.1259	0.1057	7.6000 004	9-	,	9.5700e- 003	9.5700e- 003			5700e- 003	9.5700 003	e-							
Mobile	1.8058	2.3663	15.7726	0.029	2.80	070	0.0273	2.8342	0.74	76 0	.0253	0.772	9							
Total	1.8759	2.4922	15.8785	0.029	7 2.80	070	0.0368	2.8438	0.74	76 0	.0349	0.782	5							
	ROG	1	lOx (co	SO2	Fugit PM1			M10 Total	Fugitive PM2.5			PM2.5 Total		CO2 NBio		otal CO2	CH4	N20	CO2e
Percent Reduction	0.00		0.00	.00	0.00	0.00	0 0.	.00	0.00	0.00	0.	.00	0.00	0.0	0 0.	00 (0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Mitigated	1.8058	2.3663	15.7726	0.0290	2.8070	0.0273	2.8342	0.7476	0.0253	0.7729						
Unmitigated	1.8058	2.3663	15.7726	0.0290	2.8070	0.0273	2.8342	0.7476	0.0253	0.7729						

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Fast Food Restaurant with Drive Thru	1,050.22	1,373.95	1053.85	1,065,459	1,065,459
Total	1,050.22	1,373.95	1,053.85	1,065,459	1,065,459

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Fast Food Restaurant with	9.50	3.00	7.30	2.20	78.80	19.00	64	11	25

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Fast Food Restaurant with Drive	0.593575	0.040454	0.207917	0.127212	0.018382	0.000172	0.000944	0.000257	0.002369	0.001675	0.005261	0.001115	0.000667
Thru													

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
NaturalGas Mitigated	0.0139	0.1259	0.1057	7.6000e- 004		9.5700e- 003	9.5700e- 003		9.5700e- 003	9.5700e- 003						
NaturalGas Unmitigated	0.0139	0.1259	0.1057	7.6000e- 004		9.5700e- 003	9.5700e- 003		9.5700e- 003	9.5700e- 003						

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
Fast Food Restaurant with	1283.85	0.0139	0.1259	0.1057	7.6000e- 004		9.5700e- 003	9.5700e- 003		9.5700e- 003	9.5700e- 003						
Total		0.0139	0.1259	0.1057	7.6000e- 004		9.5700e- 003	9.5700e- 003		9.5700e- 003	9.5700e- 003						

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Fast Food Restaurant with	1.28385	0.0139	0.1259	0.1057	7.6000e- 004		9.5700e- 003	9.5700e- 003		9.5700e- 003	9.5700e- 003						
Total		0.0139	0.1259	0.1057	7.6000e- 004		9.5700e- 003	9.5700e- 003		9.5700e- 003	9.5700e- 003						

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e

Category					lb/day	′					lb/d	lay	
Mitigated	0.0562	0.0000	2.3000e- 004	0.0000		0.0000	0.0000	0.0000	0.0000				
Unmitigated	0.0562	0.0000	2.3000e- 004	0.0000		0.0000	0.0000	0.0000	0.0000				

6.2 Area by SubCategory Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	8.4900e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0477					0.0000	0.0000		0.0000	0.0000						
Landscaping	2.0000e- 005	0.0000	2.3000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0562	0.0000	2.3000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	lay		
Architectural Coating	8.4900e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0477					0.0000	0.0000		0.0000	0.0000						
Landscaping	2.0000e- 005	0.0000	2.3000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

T	0.0500	0.0000		0.0000		0.0000		0.0000	0.0000		1	_				1	_
Total	0.0562	0.0000	2.3000e- 004	0.0000	0.0000	0.0000		0.0000	0.0000								
7.0 Water	Detail												•				
7.1 Mitigati	on Meas	sures V	Vater														
3.0 Waste	Detail																
3.1 Mitigati	on Meas	sures V	Vaste														
9.0 Operat	tional C	Offroad															
Equ	ipment Typ	е	N	Number	Hours/Da	У	Days/\	⁄ear	Но	rse Power		Load Fac	ctor	Fue	I Туре	I	
				Number	Hours/Da	у	Days/\	⁄ear	Но	rse Power		Load Fac	ctor	Fue	I Туре	1	
10.0 Static	onary E	quipm	ent		Hours/Da	у	Days/\	ear/	Но	rse Power	I	Load Fac	ctor	Fue	I Туре]	
10.0 Statio	onary E	quipmo	ent Generat		Hours/Da		Days/\frac{1}{2}			rse Power		Load Fac			l Type]	
10.0 Station	onary E	quipmo	ent Generat	tors]	
10.0 Static Fire Pumps Equ Boilers	onary E	quipmonth of the second of the	ent Generat	tors		у		Year	Но				ctor]	
10.0 Static Fire Pumps Equ Boilers	and Eme	quipmonergency	ent Generat	cors Number	Hours/Da	у	Hours/	Year	Но	rse Powei		Load Fac	ctor]	

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 12/19/2018 1:14 PM

99 and North 5K Building Operational - Fresno County, Annual

99 and North 5K Building Operational Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	0.51	Acre	0.51	22,215.60	0
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	0
Parking Lot	36.00	Space	0.32	14,400.00	0
Fast Food Restaurant with Drive Thru	2.00	1000sqft	0.05	1,998.00	0
Strip Mall	3.00	1000sqft	0.07	3,002.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45

Climate Zone 3 Operational Year 2022

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Assumed worst-case - FF rest w drive through. Traffic study and ITE 10th Edition. 3 mile service area

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Fleet Mix - Revised fleet mix based on estimated trucks

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.13	4.0000e-004
tblFleetMix	HHD	0.13	4.0000e-004
tblFleetMix	LDA	0.49	0.61
tblFleetMix	LDA	0.49	0.61
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	4.5020e-003	2.6700e-004
tblFleetMix	LHD2	4.5020e-003	2.6700e-004
tblFleetMix	MHD	0.03	1.2010e-003
tblFleetMix	MHD	0.03	1.2010e-003
tblLandUse	LandUseSquareFeet	2,000.00	1,998.00
tblLandUse	LandUseSquareFeet	3,000.00	3,002.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	21.00	11.00
tblVehicleTrips	DV_TP	40.00	11.00
tblVehicleTrips	PB_TP	50.00	25.00
tblVehicleTrips	PB_TP	15.00	25.00
tblVehicleTrips	PR_TP	29.00	64.00
tblVehicleTrips	PR_TP	45.00	64.00
tblVehicleTrips	ST_TR	722.03	673.64
tblVehicleTrips	ST_TR	42.04	616.12
tblVehicleTrips	SU_TR	542.72	421.82
tblVehicleTrips	SU_TR	20.43	472.58

tblVehicleTrips	WD_TR	496.12	820.38
tblVehicleTrips	WD_TR	44.32	470.95

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.0268	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	2.4400e- 003	0.0222	0.0186	1.3000e- 004		1.6900e- 003	1.6900e- 003		1.6900e- 003	1.6900e- 003						
Mobile	0.6696	0.7639	5.0113	0.0120	1.1959	0.0106	1.2065	0.3191	9.7900e- 003	0.3289						
Waste						0.0000	0.0000		0.0000	0.0000						
Water						0.0000	0.0000		0.0000	0.0000						
Total	0.6988	0.7861	5.0303	0.0122	1.1959	0.0122	1.2082	0.3191	0.0115	0.3306						

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.0268	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	2.4400e- 003	0.0222	0.0186	1.3000e- 004		1.6900e- 003	1.6900e- 003		1.6900e- 003	1.6900e- 003						
Mobile	0.6696	0.7639	5.0113	0.0120	1.1959	0.0106	1.2065	0.3191	9.7900e- 003	0.3289						

Waste						0.0	0000	0.0000		0.0	0000	0.00	000							
Water							0000	0.0000			0000	0.00								
Total	0.6988	0.7861	5.0303	0.01	22 1.1	959 0.0	122	1.2082	0.31	191 0.0)115	0.33	306							
	ROG		NOx	СО	SO2	Fugitive PM10			M10 otal	Fugitive PM2.5	Exh	aust 2.5	PM2.5 Total	Bio- CO	2 NBio-Co	O2 Tot		H4	N20	CO2e
Percent Reduction	0.00		0.00	0.00	0.00	0.00	0.	.00 0	.00	0.00	0.0	00	0.00	0.00	0.00	0.0	0 0	.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.6696	0.7639	5.0113	0.0120	1.1959	0.0106	1.2065	0.3191	9.7900e- 003	0.3289						
Unmitigated	0.6696	0.7639	5.0113	0.0120	1.1959	0.0106	1.2065	0.3191	9.7900e- 003	0.3289						

4.2 Trip Summary Information

	Aver	age Daily Trip I	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Fast Food Restaurant with Drive Thru	1,640.76	1,347.28	843.64	1,442,284	1,442,284
Other Asphalt Surfaces	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Strip Mall	1,412.85	1,848.36	1417.74	1,768,971	1,768,971
Total	3,053.61	3,195.64	2,261.38	3,211,255	3,211,255

4.3 Trip Type Information

	Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by

Fast Food Restaurant with	9.50	3.00	7.30	2.20	78.80	19.00	64	11	25
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Strip Mall	9.50	3.00	7.30	16.60	64.40	19.00	64	11	25

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Fast Food Restaurant with Drive	0.607500	0.038442	0.209596	0.116157	0.015815	0.000267	0.001201	0.000400	0.002363	0.001519	0.005062	0.001083	0.000594
Other Asphalt Surfaces						0.004502							
Other Non-Asphalt Surfaces	0.492212	0.031147	0.169820	0.116157	0.015815	0.004502	0.033398	0.126328	0.002363	0.001519	0.005062	0.001083	0.000594
Parking Lot	0.492212	0.031147	0.169820	0.116157	0.015815	0.004502	0.033398	0.126328	0.002363	0.001519	0.005062	0.001083	0.000594
Strip Mall	0.607500	0.038442	0.209596	0.116157	0.015815	0.000267	0.001201	0.000400	0.002363	0.001519	0.005062	0.001083	0.000594

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000						
Electricity Unmitigated)		0.0000	0.0000		0.0000	0.0000	0					
NaturalGas Mitigated	2.4400e- 003	0.0222	0.0186	1.3000e- 004		1.6900e- 003	1.6900e- 003		1.6900e- 003	1.6900e- 003						
NaturalGas Unmitigated	2.4400e- 003	0.0222	0.0186	1.3000e- 004		1.6900e- 003	1.6900e- 003) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.6900e- 003	1.6900e- 003						

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ıs/yr							МТ	-/yr		
Fast Food	420419	2.2700e-	0.0206	0.0173	1.2000e-		1.5700e-	1.5700e-		1.5700e-	1.5700e-						
Restaurant with		003			004		003	003		003	003						
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Other Non-Asphalt Surfaces		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Strip Mall	32121.4	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004						
Total		2.4400e- 003	0.0222	0.0186	1.3000e- 004		1.6900e- 003	1.6900e- 003		1.6900e- 003	1.6900e- 003						

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	/yr		
Fast Food Restaurant with	420419	2.2700e- 003	0.0206	0.0173	1.2000e- 004		1.5700e- 003	1.5700e- 003		1.5700e- 003	1.5700e- 003						
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	***************************************	0.0000	0.0000						
Other Non-Asphalt Surfaces		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Strip Mall	32121.4	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004						
Total		2.4400e- 003	0.0222	0.0186	1.3000e- 004		1.6900e- 003	1.6900e- 003		1.6900e- 003	1.6900e- 003						

5.3 Energy by Land Use - Electricity

Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/уг	
Fast Food Restaurant with	57882.1				
Other Asphalt Surfaces	0				
Other Non-Asphalt Surfaces	0				
Parking Lot	5040				
Strip Mall	24466.3				
Total					

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/уг	
Fast Food Restaurant with	57882.1				
Other Asphalt Surfaces	0				
Other Non-Asphalt Surfaces	0				
Parking Lot	5040				
Strip Mall	24466.3				
Total					

6.0 Area Detail

6.1 Mitigation Measures Area

Use Electric Lawnmower
Use Electric Leafblower
Use Electric Chainsaw

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.0268	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Unmitigated	0.0268	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	4.3900e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0223					0.0000	0.0000		0.0000	0.0000						
Landscaping	4.0000e- 005	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0268	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	4.3900e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0223					0.0000	0.0000		0.0000	0.0000						
Landscaping	4.0000e- 005	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0268	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated				

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2 CH4	N2O	CO2e
Land Use	Mgal	МТ	Г/уг	
Fast Food	0.607067 /			
Restaurant with	0.038749			
Other Asphalt Surfaces	0/0			
Other Non-Asphalt Surfaces	0/0			
Parking Lot	0/0			
Strip Mall	0.222218 / 0.136198			
Total				

Mitigated

	Indoor/Out door Use	Total CO2 CH4	N2O	CO2e
Land Use	Mgal	МП	Γ/yr	
Fast Food	0.485654 /			
Restaurant with	0.0363853			
	0/0			
Surfaces				
Other Non-Asphalt	0/0			
Surfaces				
Parking Lot	0/0			
Strip Mall	0.177774/			
	0.12789			
Total				
. 3.01				

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Mitigated				

8.2 Waste by Land Use Unmitigated

Waste Disposed	Total CO2	CH4	N2O	CO2e
tons		МТ	/yr	
23.04				
0				
0				
0				
3.15				
	Disposed tons 23.04 0 0	Disposed tons 23.04 0 0	Disposed tons MT 23.04 0 0	Disposed tons MT/yr 23.04 0 0

Mitigated

	Waste Disposed	Total CO2 CH4	N2O	CO2e
Land Use	tons	МТ	Г/уг	
Fast Food Restaurant with	23.04			
Other Asphalt Surfaces	0			
Other Non-Asphalt Surfaces	0			
Parking Lot	0			
Strip Mall	3.15			
Total				

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type	
Boilers							

Heat Input/Year

Boiler Rating

Fuel Type

Equipment Type Number Heat Input/Day User Defined Equipment

Equipment Type	Number

11.0 Vegetation

Page 1 of 1

Date: 12/19/2018 1:15 PM

99 and North 5K Building Operational - Fresno County, Winter

99 and North 5K Building Operational Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	0.51	Acre	0.51	22,215.60	0
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	0
Parking Lot	36.00	Space	0.32	14,400.00	0
Fast Food Restaurant with Drive Thru	2.00	1000sqft	0.05	1,998.00	0
Strip Mall	3.00	1000sqft	0.07	3,002.00	O

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45

Climate Zone 3 Operational Year 2022

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Assumed worst-case - FF rest w drive through. Traffic study and ITE 10th Edition. 3 mile service area

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Fleet Mix - Revised fleet mix based on estimated trucks

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.13	4.0000e-004
tblFleetMix	HHD	0.13	4.0000e-004
tblFleetMix	LDA	0.49	0.61
tblFleetMix	LDA	0.49	0.61
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	4.5020e-003	2.6700e-004
tblFleetMix	LHD2	4.5020e-003	2.6700e-004
tblFleetMix	MHD	0.03	1.2010e-003
tblFleetMix	MHD	0.03	1.2010e-003
tblLandUse	LandUseSquareFeet	2,000.00	1,998.00
tblLandUse	LandUseSquareFeet	3,000.00	3,002.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	21.00	11.00
tblVehicleTrips	DV_TP	40.00	11.00
tblVehicleTrips	PB_TP	50.00	25.00
tblVehicleTrips	PB_TP	15.00	25.00
tblVehicleTrips	PR_TP	29.00	64.00
tblVehicleTrips	PR_TP	45.00	64.00
tblVehicleTrips	ST_TR	722.03	673.64
tblVehicleTrips	ST_TR	42.04	616.12
tblVehicleTrips	SU_TR	542.72	421.82
tblVehicleTrips	SU_TR	20.43	472.58

tblVehicleTrips	WD_TR	496.12	820.38
tblVehicleTrips	WD_TR	44.32	470.95

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day								lb/d	lay						
Area	0.1469	4.0000e- 005	4.2600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Energy	0.0134	0.1216	0.1021	7.3000e- 004		9.2400e- 003	9.2400e- 003		9.2400e- 003	9.2400e- 003						
Mobile	3.8873	5.2638	34.5747	0.0757	8.0079	0.0688	8.0767	2.1320	0.0638	2.1958						
Total	4.0475	5.3853	34.6811	0.0765	8.0079	0.0780	8.0859	2.1320	0.0731	2.2051						

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Area	0.1469	4.0000e- 005	4.2100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005						
Energy	0.0134	0.1216	0.1021	7.3000e- 004		9.2400e- 003	9.2400e- 003		9.2400e- 003	9.2400e- 003						
Mobile	3.8873	5.2638	34.5747	0.0757	8.0079	0.0688	8.0767	2.1320	0.0638	2.1958						
Total	4.0475	5.3853	34.6810	0.0765	8.0079	0.0780	8.0859	2.1320	0.0731	2.2051						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Mitigated	3.8873	5.2638	34.5747	0.0757	8.0079	0.0688	8.0767	2.1320	0.0638	2.1958						
Unmitigated	3.8873	5.2638	34.5747	0.0757	8.0079	0.0688	8.0767	2.1320	0.0638	2.1958						

4.2 Trip Summary Information

	Aver	age Daily Trip I	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Fast Food Restaurant with Drive Thru	1,640.76	1,347.28	843.64	1,442,284	1,442,284
Other Asphalt Surfaces	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Strip Mall	1,412.85	1,848.36	1417.74	1,768,971	1,768,971
Total	3,053.61	3,195.64	2,261.38	3,211,255	3,211,255

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Fast Food Restaurant with	9.50	3.00	7.30	2.20	78.80	19.00	64	11	25
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Strip Mall	9.50	3.00	7.30	16.60	64.40	19.00	64	11	25

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Fast Food Restaurant with Drive	0.607500	0.038442	0.209596	0.116157	0.015815	0.000267	0.001201	0.000400	0.002363	0.001519	0.005062	0.001083	0.000594

Other Asphalt Surfaces	0.492212	0.031147	0.169820	0.116157	0.015815	0.004502	0.033398	0.126328	0.002363	0.001519	0.005062	0.001083	0.000594
Other Non-Asphalt Surfaces	0.492212	0.031147	0.169820	0.116157	0.015815	0.004502	0.033398	0.126328	0.002363	0.001519	0.005062	0.001083	0.000594
Parking Lot	0.492212	0.031147	0.169820	0.116157	0.015815	0.004502	0.033398	0.126328	0.002363	0.001519	0.005062	0.001083	0.000594
Strip Mall	0.607500	0.038442	0.209596	0.116157	0.015815	0.000267	0.001201	0.000400	0.002363	0.001519	0.005062	0.001083	0.000594

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NaturalGas Mitigated	0.0134	0.1216	0.1021	7.3000e- 004		9.2400e- 003	9.2400e- 003		9.2400e- 003	9.2400e- 003						
NaturalGas Unmitigated	0.0134	0.1216	0.1021	7.3000e- 004		9.2400e- 003	9.2400e- 003		9.2400e- 003	9.2400e- 003						

5.2 Energy by Land Use - NaturalGas Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	ay		
Fast Food Restaurant with	1151.83	0.0124	0.1129	0.0949	6.8000e- 004		8.5800e- 003	8.5800e- 003		8.5800e- 003	8.5800e- 003						
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						

Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Parking Lot	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Strip Mall	88.0038	9.5000e- 004	8.6300e- 003	7.2500e- 003	5.0000e- 005	6.6000e- 004	6.6000e- 004	6.6000e- 004	6.6000e- 004			
Total		0.0134	0.1216	0.1021	7.3000e- 004	9.2400e- 003	9.2400e- 003	9.2400e- 003	9.2400e- 003			

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	day		
Fast Food Restaurant with	1.15183	0.0124	0.1129	0.0949	6.8000e- 004		8.5800e- 003	8.5800e- 003		8.5800e- 003	8.5800e- 003						
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	9)	<u> </u>	
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Strip Mall	0.0880038	9.5000e- 004	8.6300e- 003	7.2500e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004						
Total		0.0134	0.1216	0.1021	7.3000e- 004		9.2400e- 003	9.2400e- 003		9.2400e- 003	9.2400e- 003						

6.0 Area Detail

6.1 Mitigation Measures Area

Use Electric Lawnmower

Use Electric Leafblower

Use Electric Chainsaw

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.1469	4.0000e- 005	4.2100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005						
Unmitigated	0.1469	4.0000e- 005	4.2600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						

6.2 Area by SubCategory Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	ay		
Architectural Coating	0.0240					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.1224					0.0000	0.0000		0.0000	0.0000						
Landscaping	4.0000e- 004	4.0000e- 005	4.2600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Total	0.1469	4.0000e- 005	4.2600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	ay		

Architectural Coating	0.0240				0.0000	0.0000	0.0000	0.0000			
Consumer Products	0.1224				0.0000	0.0000	0.0000	0.0000			
Landscaping	3.9000e- 004	4.0000e- 005	4.2100e- 003	0.0000	1.0000e- 005	1.0000e- 005	1.0000e- 005	1.0000e- 005)	
Total	0.1469	4.0000e- 005	4.2100e- 003	0.0000	1.0000e- 005	1.0000e- 005	1.0000e- 005	1.0000e- 005			

7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 12/19/2018 11:55 AM

99 and North 3K Building - Operational - Fresno County, Annual

99 and North 3K Building - Operational Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	0.45	Acre	0.45	19,602.00	0
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	0
Parking Lot	51.00	Space	0.46	20,400.00	0
Strip Mall	3.00	1000sqft	0.07	3,000.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45Climate Zone3Operational Year2025

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Used worst-case of FF Rest w drive through. Traffic study and ITE 10th edition. 3 mile service area. Trip % from TIS

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Fleet Mix - Revised fleet mix based on truck trips

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.13	4.0000e-004
tblFleetMix	LDA	0.51	0.62
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	3.9290e-003	2.6700e-004
tblFleetMix	MHD	0.03	1.2010e-003
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblTripsAndVMT	WorkerTripNumber	4.00	0.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	40.00	11.00
tblVehicleTrips	PB_TP	15.00	25.00
tblVehicleTrips	PR_TP	45.00	64.00
tblVehicleTrips	ST_TR	42.04	616.12
tblVehicleTrips	SU_TR	20.43	472.58
tblVehicleTrips	WD_TR	44.32	470.95

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Area	0.0179	0.0000	5.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

Energy	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004			
Mobile	0.2716	0.2984	2.0701	5.7900e- 003	0.6583	5.1200e- 003	0.6634	0.1756	4.7400e- 003	0.1803			
Waste						0.0000	0.0000		0.0000	0.0000			
Water						0.0000	0.0000		0.0000	0.0000			
Total	0.2896	0.3000	2.0719	5.8000e- 003	0.6583	5.2400e- 003	0.6635	0.1756	4.8600e- 003	0.1804			

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CC	2 Total C	O2 C	H4 N	120 0	CO2e
Category					toi	ns/yr								MT/yr			
Area	0.0179	0.0000	4.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000							
Energy	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004							
Mobile	0.2716	0.2984	2.0701	5.7900e- 003	0.6583	5.1200e- 003	0.6634	0.1756	4.7400e- 003	0.1803							
Waste						0.0000	0.0000		0.0000	0.0000							***************************************
Water						0.0000	0.0000		0.0000	0.0000							
Total	0.2896	0.3000	2.0719	5.8000e- 003	0.6583	5.2400e- 003	0.6635	0.1756	4.8600e- 003	0.1804							
	ROG	N	IOx C	o s		_			_		12.5 Bio- otal	· CO2 NBi	o-CO2	Total CO2	CH4	N20	С

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

4.0 Operational Detail - Mobile

0.00

Percent Reduction 0.00

0.00

0.00

0.00

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.2716	0.2984	2.0701	5.7900e- 003	0.6583	5.1200e- 003	0.6634	0.1756	4.7400e- 003	0.1803						
Unmitigated	0.2716	0.2984	2.0701	5.7900e- 003	0.6583	5.1200e- 003	0.6634	0.1756	4.7400e- 003	0.1803						

4.2 Trip Summary Information

	Aver	age Daily Trip I	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Strip Mall	1,412.85	1,848.36	1417.74	1,768,971	1,768,971
Total	1,412.85	1,848.36	1,417.74	1,768,971	1,768,971

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0		
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0		
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0		
Strip Mall	9.50	3.00	7.30	16.60	64.40	19.00	64	11	25		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.505528	0.029619	0.172275	0.104063	0.012782	0.003929	0.033727	0.128026	0.002328	0.001354	0.004810	0.001048	0.000512
Other Non-Asphalt Surfaces	0.505528	0.029619	0.172275	0.104063	0.012782	0.003929	0.033727	0.128026	0.002328	0.001354	0.004810	0.001048	0.000512
Parking Lot	0.505528	0.029619	0.172275	0.104063	0.012782	0.003929	0.033727	0.128026	0.002328	0.001354	0.004810	0.001048	0.000512
Strip Mall	0.622590	0.036478	0.212168	0.104063	0.012782	0.000267	0.001201	0.000400	0.002328	0.001354	0.004810	0.001048	0.000512

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000						
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000						
NaturalGas Mitigated	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004						
NaturalGas Unmitigated	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004						

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Land Use	kBTU/yr		tons/yr										MT/yr							
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000									
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000									
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000					D				
Strip Mall	32100	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004									
Total		1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004									

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Land Use	kBTU/yr		tons/yr										MT/yr							
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000									
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000									
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000									
Strip Mall	32100	1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004									
Total		1.7000e- 004	1.5700e- 003	1.3200e- 003	1.0000e- 005		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004									

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Г/уг	
Other Asphalt Surfaces	0				
Other Non-Asphalt Surfaces	0				
Parking Lot	7140				
Strip Mall	24450				
Total					

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Γ/yr	
Other Asphalt Surfaces	0				
Other Non-Asphalt Surfaces	0				
Parking Lot	7140				
Strip Mall	24450				
Total					

6.0 Area Detail

6.1 Mitigation Measures Area

Use Electric Lawnmower

Use Electric Leafblower

Use Electric Chainsaw

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Mitigated	0.0179	0.0000	4.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Unmitigated	0.0179	0.0000	5.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

6.2 Area by SubCategory <u>Unmitigated</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	3.0700e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0148					0.0000	0.0000		0.0000	0.0000						
Landscaping	5.0000e- 005	0.0000	5.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0179	0.0000	5.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	3.0700e- 003					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0148					0.0000	0.0000		0.0000	0.0000)
Landscaping	5.0000e- 005	0.0000	4.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Total	0.0179	0.0000	4.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						

7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated				

7.2 Water by Land Use Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	√yr	
Other Asphalt Surfaces	0/0				
Other Non-Asphalt Surfaces	0/0				
Parking Lot	0/0				
Strip Mall	0.222218 / 0.136198				
Total					

Mitigated

Indoor/Ou door Use	Total CO2	CH4	N2O	CO2e
-----------------------	-----------	-----	-----	------

Land Use	Mgal	МТ	√yr	
Other Asphalt Surfaces	0/0			
Other Non-Asphalt Surfaces	0/0			
Parking Lot	0/0			
Strip Mall	0.177774 / 0.12789			
Total				

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT.	/yr	
Mitigated				
Unmitigated				

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MΠ	Γ/yr	

Other Asphalt Surfaces	0		
Other Non-Asphalt Surfaces	0		
Parking Lot	0		
Strip Mall	3.15		
Total			

Mitigated

	Waste Disposed	Total CO2 CH4	N2O	CO2e
Land Use	tons	МТ	Γ/yr	
Other Asphalt Surfaces	0			
Other Non-Asphalt Surfaces	0			
Parking Lot	0			
Strip Mall	3.15			
Total				

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
-----------------------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
User Defined Equipment					

User Defined Equipment

Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 12/19/2018 11:57 AM

99 and North 3K Building - Operational - Fresno County, Winter

99 and North 3K Building - Operational Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	0.45	Acre	0.45	19,602.00	0
Other Non-Asphalt Surfaces	0.16	Acre	0.16	6,969.60	0
Parking Lot	51.00	Space	0.46	20,400.00	O
Strip Mall	3.00	1000sqft	0.07	3,000.00	O

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45Climate Zone3Operational Year2025

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Site Plan

Construction Phase -

Off-road Equipment - Operational only

Trips and VMT - Operational only

Vehicle Trips - Used worst-case of FF Rest w drive through. Traffic study and ITE 10th edition. 3 mile service area. Trip % from TIS

Construction Off-road Equipment Mitigation -

Area Mitigation -

Water Mitigation -

Fleet Mix - Revised fleet mix based on truck trips

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.13	4.0000e-004
tblFleetMix	LDA	0.51	0.62
tblFleetMix	LDT1	0.03	0.04
tblFleetMix	LDT2	0.17	0.21
tblFleetMix	LHD2	3.9290e-003	2.6700e-004
tblFleetMix	MHD	0.03	1.2010e-003
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblTripsAndVMT	WorkerTripNumber	4.00	0.00
tblVehicleTrips	CC_TL	7.30	3.00
tblVehicleTrips	DV_TP	40.00	11.00
tblVehicleTrips	PB_TP	15.00	25.00
tblVehicleTrips	PR_TP	45.00	64.00
tblVehicleTrips	ST_TR	42.04	616.12
tblVehicleTrips	SU_TR	20.43	472.58
tblVehicleTrips	WD_TR	44.32	470.95

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	0.0982	5.0000e- 005	5.5600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Energy	9.5000e- 004	8.6200e- 003	7.2400e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004						

Mobile	1.6592	2.1734	14.9472	0.0385	4.6543	0.0353	4.6896	1.2386	0.0327	1.2713			
Total	1.7583	2.1820	14.9600	0.0386	4.6543	0.0359	4.6903	1.2386	0.0333	1.2720			

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaus PM2.5			Bio- CO2 NI	Bio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day								lb/d	ay		
Area	0.0981	5.0000e- 005	5.4900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e 005	2.0000 005	9-						
Energy	9.5000e- 004	8.6200e- 003	7.2400e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e 004	- 6.6000 004	9-						
Mobile	1.6592	2.1734	14.9472	0.0385	4.6543	0.0353	4.6896	1.2386	0.0327	1.2713							
Total	1.7583	2.1820	14.9599	0.0386	4.6543	0.0359	4.6903	1.2386	0.0333	1.2720)						
	ROG	N	Ox C	co s					•		PM2.5 Total		2 NBio-0	CO2 Tot		14 N	20 CO
Percent Reduction	0.00	0.	00 0	.00 0.	.00 0	.00 0	.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.0	0 0.0	0 0	00 0.

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Mitigated	1.6592	2.1734	14.9472	0.0385	4.6543	0.0353	4.6896	1.2386	0.0327	1.2713						
Unmitigated	1.6592	2.1734	14.9472	0.0385	4.6543	0.0353	4.6896	1.2386	0.0327	1.2713						

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Strip Mall	1,412.85	1,848.36	1417.74	1,768,971	1,768,971
Total	1,412.85	1,848.36	1,417.74	1,768,971	1,768,971

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %			
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by	
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0	
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0	
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0	
Strip Mall	9.50	3.00	7.30	16.60	64.40	19.00	64	11	25	

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.505528	0.029619	0.172275	0.104063	0.012782	0.003929	0.033727	0.128026	0.002328	0.001354	0.004810	0.001048	0.000512
Other Non-Asphalt Surfaces	0.505528	0.029619	0.172275	0.104063	0.012782	0.003929	0.033727	0.128026	0.002328	0.001354	0.004810	0.001048	0.000512
Parking Lot	0.505528	0.029619	0.172275	0.104063	0.012782	0.003929	0.033727	0.128026	0.002328	0.001354	0.004810	0.001048	0.000512
Strip Mall	0.622590	0.036478	0.212168	0.104063	0.012782	0.000267	0.001201	0.000400	0.002328	0.001354	0.004810	0.001048	0.000512

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					lb/da	ay					lb/d	day	
NaturalGas Mitigated	9.5000e- 004	003	7.2400e- 003	005		6.6000e- 004	6.6000e- 004	6.6000e- 004	6.6000e- 004				
NaturalGas Unmitigated	9.5000e- 004	8.6200e- 003	7.2400e- 003			6.6000e- 004	6.6000e- 004	6.6000e- 004	6.6000e- 004				

5.2 Energy by Land Use - NaturalGas Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	day		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Strip Mall	87.9452	9.5000e- 004	8.6200e- 003	7.2400e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004						
Total		9.5000e- 004	8.6200e- 003	7.2400e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004						

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/d	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000			Ů			
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						

Strip Mall	0.0879452		8.6200e-	7.2400e-	5.0000e-	 6.6000e-	6.6000e-	6.6000e-	6.6000e-	 	 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		004	003	003	005	004	004	004	004			
Total		9.5000e-	8.6200e-	7.2400e-	5.0000e-	6.6000e-	6.6000e-	6.6000e-	6.6000e-			
		004	003	003	005	004	004	004	004			

6.0 Area Detail

6.1 Mitigation Measures Area

Use Electric Lawnmower

Use Electric Leafblower

Use Electric Chainsaw

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Mitigated	0.0981	5.0000e- 005	5.4900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Unmitigated	0.0982	5.0000e- 005	5.5600e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	ay		
Architectural Coating	0.0168					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0808					0.0000	0.0000		0.0000	0.0000						

Landscaping	5.1000e- 004		5.5600e- 003	0.0000	2.0000e- 005	2.0000e- 005	 2.0000e- 005	2.0000e- 005		 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		000	000		000	000	000	000				
Total	0.0982	5.0000e-	5.5600e-	0.0000	2.0000e-	2.0000e-	2.0000e-	2.0000e-				
		005	003		005	005	005	005				

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	ay		
Architectural Coating	0.0168					0.0000	0.0000		0.0000	0.0000						
Consumer Products	0.0808					0.0000	0.0000		0.0000	0.0000						
Landscaping	5.0000e- 004	5.0000e- 005	5.4900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						
Total	0.0981	5.0000e- 005	5.4900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005						

7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

Page 1 of 1

Date: 12/18/2018 4:37 PM

99 and North - HHD for Refuse collection - Fresno County, Annual

99 and North - HHD for Refuse collection Fresno County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
User Defined Industrial	1.00	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

Urbanization Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) 45

Climate Zone 3 Operational Year 2020

Utility Company Pacific Gas & Electric Company

CO2 Intensity 641.35 CH4 Intensity 0.029 N2O Intensity 0.006

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity

 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - HHD trucks from refuse only

Construction Phase -

Off-road Equipment - Ops only

Trips and VMT - Ops only

Vehicle Trips - 20 mile trip length. 52 weeks x 4 service trips per week x 2 (roundtrip) = 416 trips divided by 260 days = 1.6 trip rate

Fleet Mix - All HHD

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.12	1.00
tblFleetMix	LDA	0.48	0.00

tblFleetMix	I DT1	0.03	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.02	0.00
tblFleetMix	LHD2	4.9970e-003	0.00
tblFleetMix	MCY	5.2610e-003	0.00
tblFleetMix	MDV	0.13	0.00
tblFleetMix	MH	6.6700e-004	0.00
tblFleetMix	MHD	0.03	0.00
tblFleetMix	OBUS	2.3690e-003	0.00
tblFleetMix	SBUS	1.1150e-003	0.00
tblFleetMix	UBUS	1.6750e-003	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblVehicleTrips	CC_TL	7.30	20.00
tblVehicleTrips	CC_TTP	0.00	100.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	WD_TR	0.00	1.60

2.0 Emissions Summary

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.0000	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Mobile	1.6500e- 003	0.0583	7.8300e- 003	1.7000e- 004	3.5500e- 003	2.0000e- 004	3.7500e- 003	9.8000e- 004	1.9000e- 004	1.1700e- 003						

Waste						0.0000	0.0000		0.0000	0.0000			
Water						0.0000	0.0000		0.0000	0.0000			
Total	1.6500e- 003	0.0583	7.8400e- 003	1.7000e- 004	3.5500e- 003	2.0000e- 004	3.7500e- 003	9.8000e- 004	1.9000e- 004	1.1700e- 003			

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.0000	0.0000	1.0000e- 005	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Mobile	1.6500e- 003	0.0583	7.8300e- 003	1.7000e- 004	3.5500e- 003	2.0000e- 004	3.7500e- 003	9.8000e- 004	1.9000e- 004	1.1700e- 003						
Waste						0.0000	0.0000		0.0000	0.0000						
Water						0.0000	0.0000		0.0000	0.0000						
Total	1.6500e- 003	0.0583	7.8400e- 003	1.7000e- 004	3.5500e- 003	2.0000e- 004	3.7500e- 003	9.8000e- 004	1.9000e- 004	1.1700e- 003						

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		

Mitigated	1.6500e- 003	0.0583	7.8300e- 003	1.7000e- 004	3.5500e- 003	2.0000e- 004	3.7500e- 003	9.8000e- 004	1.9000e- 004	1.1700e- 003			
Unmitigated	1.6500e- 003	0.0583	7.8300e- 003	1.7000e- 004	3.5500e- 003	2.0000e- 004	3.7500e- 003	9.8000e- 004	1.9000e- 004	1.1700e- 003			

4.2 Trip Summary Information

	Aver	age Daily Trip	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
User Defined Industrial	1.60	0.00	0.00	8,320	8,320
Total	1.60	0.00	0.00	8,320	8,320

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
User Defined Industrial	0.00	20.00	0.00	0.00	100.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Page 1 of 1

Date: 12/18/2018 4:39 PM

99 and North - HHD for Refuse collection - Fresno County, Winter

99 and North - HHD for Refuse collection Fresno County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
User Defined Industrial	1.00	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)45Climate Zone3Operational Year2020

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - HHD trucks from refuse only

Construction Phase -

Off-road Equipment - Ops only

Trips and VMT - Ops only

Vehicle Trips - 20 mile trip length. 52 weeks x 4 service trips per week x 2 (roundtrip) = 416 trips divided by 260 days = 1.6 trip rate

Fleet Mix - All HHD

Table Name	Column Name	Default Value	New Value
tblFleetMix	HHD	0.12	1.00
tblFleetMix	LDA	0.48	0.00

tblFleetMix	LDT1	0.03	0.00
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.02	0.00
tblFleetMix	LHD2	4.9970e-003	0.00
tblFleetMix	MCY	5.2610e-003	0.00
tblFleetMix	MDV	0.13	0.00
tblFleetMix	MH	6.6700e-004	0.00
tblFleetMix	MHD	0.03	0.00
tblFleetMix	OBUS	2.3690e-003	0.00
tblFleetMix	SBUS	1.1150e-003	0.00
tblFleetMix	UBUS	1.6750e-003	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblVehicleTrips	CC_TL	7.30	20.00
tblVehicleTrips	CC_TTP	0.00	100.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	WD_TR	0.00	1.60

2.0 Emissions Summary

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Area	1.0000e- 005	0.0000	1.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000						
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000						
Mobile	0.0130	0.4505	0.0647	1.2600e- 003	0.0280	1.5600e- 003	0.0295	7.6700e- 003	1.4900e- 003	9.1600e- 003						

Total	0.0130	0.4505	0.0648	1.2600e-	0.0280	1.5600e-	0.0295	7.6700e-	1.4900e-	9.1600e-			
				003		003		003	003	003			1
													1

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitiv PM2.		aust 12.5	PM2.5 Total	Bio-	CO2 NBio	o- CO2 To	tal CO2	CH4	N2O	CC	O2e
Category					lb/	day									lb/da	ay			
Area	1.0000e- 005	0.0000	1.0000e- 004	0.0000		0.0000	0.0000		0.0	000	0.0000								
Energy	0.0000	0.0000	0.0000	0.0000	 I I I I I	0.0000	0.0000		0.0	000	0.0000								
Mobile	0.0130	0.4505	0.0647	1.2600e- 003	0.0280	1.5600e- 003	0.0295	7.6700 003		00e- 03	9.1600e- 003								
Total	0.0130	0.4505	0.0648	1.2600e- 003	0.0280	1.5600e- 003	0.0295	7.6700 003		00e- 03	9.1600e- 003								
	ROG	N	lOx (CO S		•		M10 I	Fugitive PM2.5	Exha PM:		12.5 otal	Bio- CO2	NBio-CO	2 Tota		14	N20	CO
Percent	0.00	0	.00 0	.00 0.	.00 0	.00 0	.00 (0.00	0.00	0.0	0 0.	00	0.00	0.00	0.00	0.0	00	0.00	0.

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Reduction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Mitigated	0.0130	0.4505	0.0647	1.2600e- 003	0.0280	1.5600e- 003	0.0295	7.6700e- 003	1.4900e- 003	9.1600e- 003						
Unmitigated	0.0130	0.4505	0.0647	1.2600e- 003	0.0280	1.5600e- 003	0.0295	7.6700e- 003	1.4900e- 003	9.1600e- 003						

4.2 Trip Summary Information

	Aver	age Daily Trip	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
User Defined Industrial	1.60	0.00	0.00	8,320	8,320
Total	1.60	0.00	0.00	8,320	8,320

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
User Defined Industrial	0.00	20.00	0.00	0.00	100.00	0.00	100	0	0		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000

7-11 Project Fleet Mix

Land Use
Assumptions

Unit

LandUseType SubType Amount Size Metric

Conv. Mkt w/

Recreational gas pumps 12 pumps

Project Trip Generation

VehicleTripsLandUse

Default Fleet Mix

Default Fleet Mix

Revised Fleet Mix

SubType Fast Food Restauran Total Trips	SizeMetric t 1000sqft	WD_TR 205.36	ST_TR 204.47	SU_TR 166.88	Daily Avg 199.74	Pumps 12	Trip Gen 2396.828571 2396.828571	LHD2 Frac 0.004997	LHD Trips 11.9770 11.9770	MHD Frac 0.032622	MHD Trips 78.2 78.2	HHD Frac 0.122881	HHD Trips 294.5 294.5	Total
7-11 Estimated Trips by Vehicle Type Adjusted Fleet Mix for Trucks Default Fleet Mix Difference to be allocated		LDA	LDT1	LDT2	Total				0.0000 0.0000 0.0050 0.004997		2.0 0.000834 0.032622 0.031788		0.122881	0.001669 0.160500 0.158831
Default Light Duty		LDA	2011	2012	Total									
Fleet Mix		0.481390	0.032808	0.168621	0.682819									
Revised Light Duty Fleet Mix		0.593367	0.040439	0.207844	0.841650 0.158831									

LHD2

0.018382 0.004997

0.018382 0.000000

MHD

0.000834

HHD

0.000834

0.032622 0.122881

OBUS

0.002369

UBUS

0.002369 0.001675

0.001675

MCY

0.005261

0.005261

SBUS

МН

1.000

1.000

0.001115 0.000670

0.001115 0.000670

Lifestyle Center Restaurant Truck Trips

LDT1

0.032808

0.040439

LDT2

0.168621

0.207844

MDV

0.127212

0.127212

LHD1

LDA

0.481390

0.593367

Store	sq Ft	Deliveries per Week	Semi (large)	MHD (Medium)	Van/Car (small)
Seven Eleven Store	12	7	7	7	
Totals	12	7	7	7	0
Deliveries per day		1.00	1.00	1.00	0.00
RT Trips/Day		2.00	2.00	2.00	0.00
Trips/pump	12	0.17	0.17	0.17	0.00
Truck Fleet Fraction	199.74	0.0008	0.0008	0.0008	0.0000

Panda Express Restaurant Project Fleet Mix

Land Use Assumptions

> Fast Food Restaurant

Recreational w Drive Thru 2.227 1000sqft

Project Trip Generation

VehicleTripsLandUse SubType SizeMetric Fast Food Restaurant 1000sqft Total Trips	WD_TR 346.23	ST_TR 722.03	SU_TR 542.72	Daily Avg 427.99	LU SF x1,000 2.227	Trip Gen 953.1241857 953.1241857	LHD2 Frac 0.004997	LHD Trips 4.7628 4.7628	MHD Frac 0.032622	MHD Trips 31.1 31.1	HHD Frac 0.122881	HHD Trips 117.1 117.1	Total
Panda Express Estimated Trips by Vehicle Type								0.1636		0.9		0.2	
Adjusted Fleet Mix for Trucks								0.0002		0.000944		0.000257	0.001373
2020 Default Fleet Mix								0.0050		0.032622		0.122881	0.160500
Difference to be allocated								0.004825		0.031678		0.122624	0.159127
2020 Default Light	LDA	LDT1	LDT2	Total									
Duty Fleet Mix Revised Light Duty	0.481390	0.032808	0.168621	0.682819									
Fleet Mix	0.593575	0.040454	0.207917	0.841946 0.159127									
2020 Default Fleet													
Mix		. 5.74			1.1154	LUDA			00110		1101/	00110	
2020 Default Fleet	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	МН
Mix	0.481390	0.032808	0.168621	0.127212	0.018382	0.004997	0.032622	0.122881	0.002369	0.001675	0.005261	0.001115	0.000670
Revised Fleet Mix	0.593575	0.040454	0.207917	0.127212	0.018382	0.000172	0.000944	0.000257	0.002369	0.001675	0.005261	0.001115	0.000670

1.000 1.000

Lifestyle Center Restaurant Truck Trips # or Li										
Store	sq Ft	Deliveries per Week	Semi (large)	MHD (Medium)	Van/Car (small)					
Five Guys Burgers & Fries	2400	7	2	5						
Panera Bread	4205	5	1	4	1					
Subway	1175	3		2	1					
Totals	7780	15	3	11	2					
Deliveries per day		2.14	0.43	1.57	0.29					
RT Trips/Day		4.29	0.86	3.14	0.57					
Trips/1,000 sf	7.78	0.55	0.11	0.40	0.07					
Truck Fleet Fraction	427.99	0.0013	0.0003	0.0009	0.0002					

Riverpark Lifestyle Center, Fresno, CA Survey of shop managers 2/6/2013

Fast Food Restaurant Project Fleet Mix

Land Use
Assumptions

Unit

LandUseType SubType Amount Size Metric

> Fast Food Restaurant w

Drive Thru Recreational 3 1000sqft

Project Trip Generation

VehicleTripsLandUse LU SF

0.622590 0.036478 0.212168

0.871235 0.163813

SubType Fast Food Restauran Total Trips	SizeMetric at 1000sqft	WD_TR 346.23	ST_TR 722.03	SU_TR 542.72	Daily Avg 427.99	x1,000 3	Trip Gen 1283.957143 1283.957143	LHD2 Frac 0.003929	LHD Trips 5.0447 5.0447	MHD Frac 0.033727	MHD Trips 43.3 43.3	HHD Frac 0.128026	HHD Trips 164.4 164.4	Total
Fast Food Restaurant Estimated Trips by Vehicle Type Adjusted Fleet Mix for									0.3427		1.5		0.5	
Trucks									0.0003		0.001201		0.000400	0.001869
2025 Default Fleet Mix	(0.0039		0.033727		0.128026	0.165682
Difference to be allocated									0.003662		0.032526		0.127626	0.163813
		LDA	LDT1	LDT2	Total									
2025 Default Light														
Duty Fleet Mix Revised Light Duty		0.505528	0.029619	0.172275	0.707422									

2025 Default Fleet

Mix

Fleet Mix

	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH	
2025 Default Fleet Mix	0.505528	0.029619	0.172275	0.104063	0.012782	0.003929	0.033727	0.128026	0.002328	0.001354	0.004810	0.001048	0.000512	1.000
Revised Fleet Mix	0.622590	0.036478	0.212168	0.104063	0.012782	0.000267	0.001201	0.000400	0.002328	0.001354	0.004810	0.001048	0.000512	1.000

L	ifestyle Ce	nter Restaura	ant Truck T	rips	LIID
0.	=.	Deliveries	Semi	MHD	Van/Car
Store	sq Ft	per Week	(large)	(Medium)	(small)
Five Guys Burgers & Fries	2400	7	2	5	
Starbucks I	1500	7		7	
Starbucks II	2025	9		7	2
Rubio's Fresh Mexican Grill	2310	7	4	2	1
Yogurtland	1390	3	2		1
Panera Bread	4205	5	1	4	1
Subway	1175	3		2	1
Totals	15005	41	9	27	6
Deliveries per day		5.86	1.29	3.86	0.86
RT Trips/Day		11.71	2.57	7.71	1.71
Trips/1,000 sf	15.005	0.78	0.17	0.51	0.11

Truck Fleet Fraction 427.99 0.0018 0.0004 0.0012 0.0003

Riverpark Lifestyle Center, Fresno, CA Survey of shop managers 2/6/2013

Fast Food Restaurant Project Fleet Mix

Land Use Assumptions

Unit

LandUseType SubType Amount Size Metric

Fast Food Restaurant w

Recreational Drive Thru 5 1000sqft

Project Trip Generation

2022 Default Fleet

2022 Default Fleet Mix

Mix

VehicleTripsLandUse LU SF SubType LHD2 Frac LHD Trips MHD Frac MHD Trips HHD Frac HHD Trips Total SizeMetric WD TR ST TR SU TR Daily Avg x1,000 Trip Gen Fast Food Restaurant 1000sqft 346.23 722.03 542.72 427.99 2139.928571 0.004502 9.6340 0.033398 71.5 0.126328 270.3 5 270.3 Total Trips 2139.928571 9.6340 71.5 Panda Express Estimated Trips by Vehicle Type 0.5712 2.6 0.9 Adjusted Fleet Mix for Trucks 0.0003 0.001201 0.000400 0.001869 Default Fleet Mix 0.0045 0.033398 0.126328 0.164228 Difference to be allocated 0.004235 0.032197 0.125928 0.162359 LDA LDT1 LDT2 Total 2022 Default Light Duty Fleet Mix 0.492212 0.031147 0.16982 0.693179 Revised Light Duty 0.038442 0.855538 Fleet Mix 0.607500 0.209596 0.162359

LHD2

0.015815 0.004502

0.015815 0.000267

MHD

0.033398

0.001201

HHD

0.126328

0.000400

OBUS

0.002363

0.002363

UBUS

0.001519

0.001519

MCY

0.005062

0.005062

SBUS

0.001083

0.001083

МН

0.000594

0.000594

1.000

1.000

Revised Fleet Mix 0.607500 0.038442 0.209596

LDA

0.492212

LDT1

0.031147

LDT2

0.169820

MDV

0.116157

0.116157

LHD1

Lifestyle Center Restaurant Truck Trips LПν Deliveries MHD Van/Car Semi Store sq Ft per Week (large) (Medium) (small) 2400 Five Guys Burgers & Fries Starbucks I 1500 Starbucks II 2025 Rubio's Fresh Mexican Grill 2310 Yogurtland 1390 Panera Bread 4205 5 Subway 1175 Totals 15005 41 27 Deliveries per day 5.86 1.29 3.86 0.86 RT Trips/Dav 11.71 2.57 7.71 1.71 Trips/1,000 sf 15.005 0.78 0.17 0.51 0.11 Truck Fleet Fraction 427.99 0.0018 0.0004 0.0012 0.0003

Riverpark Lifestyle Center, Fresno, CA Survey of shop managers 2/6/2013

DISTRICT PRIORITIZATION

Health Risk Screening Analysis

Name Applicability Use to provide a Prioritization Score based on the emission potency method. Entries required in yellow areas, output in grey areas. Author or updater Facility: ID#: Project #: Unit and Process# Convenience Market with Gas Station Operating Hours hr/yr Receptor Proximity and Proximity Factors Score Score Score Score Score Scores Scores are calculated by mult socres summed below by I factors. Record the Max s Scores summed below by I factors. Record the Max s Scores summed below by I factors. Record the Max s Scores summed below by I factors. Record the Max s Score Sc

 Operating Hours hr/yr Factors
 8,760.00 Cancer
 Chronic Score
 Acute Score
 Max Score

 0< R<100</td>
 1.000
 1.30E+00
 2.94E-02
 2.58E-01
 1.30E+00

 100sR<250</td>
 0.250
 3.24E-01
 7.36E-03
 6.44E-02
 3.24E-01

 250sR<500</td>
 0.040
 5.18E-02
 1.18E-03
 1.03E-02
 5.18E-02

 500sR<1000</td>
 0.011
 1.43E-02
 3.24E-04
 2.38E-03
 1.43E-02

 150dSR<2000</td>
 0.003
 3.89E-03
 8.83E-05
 7.73E-04
 3.89E-03

 150dSR<2000</td>
 0.001
 1.30E-03
 2.94E-05
 2.58E-04
 1.30E-03

 2000
 R
 0.001
 1.30E-03
 2.94E-05
 2.58E-04
 1.30E-03

 Enter the unit's CAS# of the substances emitted and their

Receptor proximity is in meters. Prioritization scores are calculated by multiplying the total scores summed below by the proximity factors. Record the Max score for your receptor distance. If the substance list for the unit is longer than the number of rows here or if there are multiple processes use additional worksheets and sum the totals of the Max Scores.

	Enter the uni	it's CAS# of the s		tted and their	Prioritzation score for each substance generated below. Totals on last row.			
Convenience Market with Gas Station	<u> </u>	amou			generated	n last row.		
	1	Annual	Maximum	Average				
į i	١ ,	Emissions	Hourly	Hourly				
Substance	CAS#	(lbs/yr)	(lbs/hr)	(lbs/hr)	Cancer	Chronic	Acute	
Benzene	71432	3.99E+00	4.55E-03	4.55E-04	8.90E-01	2.28E-02	2.53E-01	
Toluene	108883	1.06E+02	1.21E-01	1.21E-02	0.00E+00	6.07E-03	4.92E-03	
Xylene	1330207	3.19E+01	3.00E-03	3.64E-03	0.00E+00	0.00E+00	0.00E+00	
Diesel engine exhaust, particulate matter (Diesel PM)	9901	1.76E-01	5.00E-03	2.00E-05	4.06E-01	6.01E-04	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				Totals	1.30E+00	2.94E-02	2.58E-01	

Use the substance dropdown list in the CAS# Finder to locate CAS# of substances.							
Substance	CAS# Finder						
Diesel engine exhaust, particulate matter (Diesel PM)	9901						

Unit and Process#	Panda Express						
Operating Hours hr/yr	4,380.00						
Receptor Proximity and Proximity	Cancer	Chronic	Acute		_		
Factors	Score	Score	Score	Max Score	R		
0< R<100 1.000	4.06E-01	1.20E-03	0.00E+00	4.06E-01	SC		
100≤R<250 0.250	1.01E-01	3.01E-04	0.00E+00	1.01E-01	ı		
250≤R<500 0.040	1.62E-02	4.81E-05	0.00E+00	1.62E-02	re		
500≤R<1000 0.011	4.46E-03	1.32E-05	0.00E+00	4.46E-03	un		
1000≤R<1500 0.003	1.22E-03	3.61E-06	0.00E+00	1.22E-03	if		
1500≤R<2000 0.002	8.11E-04	2.41E-06	0.00E+00	8.11E-04	١,		
2000 <r 0.001<="" th=""><th>4.06E-04</th><th>1.20E-06</th><th>0.00E+00</th><th>4.06E-04</th><th>l</th></r>	4.06E-04	1.20E-06	0.00E+00	4.06E-04	l		
	Enter the unit's CAS# of the substances emitted and their						
Panda Express		amo	unts.				

Receptor proximity is in meters. Priortization scores are calculated by multiplying the total scores summed below by the proximity factors. Record the Max score for your receptor distance. If the substance list for the unit is longer than the number of rows here or if there are multiple processes use additional worksheets and sum the totals of the Max Scores.

	1100E 0 1	11202 00	0.002.00	1100E 0 1				
	Enter the uni	t's CAS# of the		tted and their		n score for each		
Panda Express		amo			generated	below. Totals o	n last row.	
		Annual	Maximum	Average				
		Emissions	Hourly	Hourly				
Substance	CAS#	(lbs/yr)	(lbs/hr)	(lbs/hr)	Cancer	Chronic	Acute	
PAHs	1151	2.55E-03	1.27E-03	5.82E-07	0.00E+00	0.00E+00	0.00E+00	
Napthalene	91203	1.50E-01	7.58E-02	3.42E-05	0.00E+00	0.00E+00	0.00E+00	
Diesel engine exhaust, particulate matter (Diesel PM)	9901	1.76E-01	5.00E-03	4.01E-05	4.06E-01	1.20E-03	0.00E+00	
(Blood I III)				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				Totals	4.06E-01	1.20E-03	0.00E+00	

Use the substance dropdown list in the CAS# Finder to locate CAS# of substances.						
Substance	CAS# Finder					
Zinc	7440666					

Unit and Process#	Unknown Rest	Unknown Restaurant 1					
Operating Hours hr/yr	4,380.00						
Receptor Proximity and Proximity	Cancer	Chronic	Acute		Г		
Factors	Score	Score	Score	Max Score	R		
0< R<100 1.000	4.06E-01	1.20E-03	0.00E+00	4.06E-01	s		
100≤R<250 0.250	1.01E-01	3.01E-04	0.00E+00	1.01E-01	ı		
250≤R<500 0.040	1.62E-02	4.81E-05	0.00E+00	1.62E-02	re		
500≤R<1000 0.011	4.46E-03	1.32E-05	0.00E+00	4.46E-03	ur		
1000≤R<1500 0.003	1.22E-03	3.61E-06	0.00E+00	1.22E-03	if		
1500≤R<2000 0.002	8.11E-04	2.41E-06	0.00E+00	8.11E-04	П		
2000 <r 0.001<="" td=""><td>4.06E-04</td><td>1.20E-06</td><td>0.00E+00</td><td>4.06E-04</td><td>ı</td></r>	4.06E-04	1.20E-06	0.00E+00	4.06E-04	ı		
	Enter the unit's CAS# of the substances emitted and the						
Unknown Restaurant 1		amo					
		Annual	Maximum	Average			
1		Emissions	Hourby	Hourly			

Receptor proximity is in meters. Priortization scores are calculated by multiplying the total scores summed below by the proximity factors. Record the Max score for your receptor distance. If the substance list for the unit is longer than the number of rows here or if there are multiple processes use additional worksheets and sum the totals of the Max Scores.

	Enter the unit's CAS# of the substances emitted and their			Prioritzation score for each substance			
Unknown Restaurant 1	amounts.			generated below. Totals on last row.			
		Annual	Maximum	Average			
		Emissions	Hourly	Hourly			
Substance	CAS#	(lbs/yr)	(lbs/hr)	(lbs/hr)	Cancer	Chronic	Acute
PAHs	1151	7.57E-04	3.78E-04	1.73E-07	0.00E+00	0.00E+00	0.00E+00
Napthalene	91203	1.70E-01	8.50E-02	3.88E-05	0.00E+00	0.00E+00	0.00E+00
Diesel engine exhaust, particulate matter (Diesel PM)	9901	1.76E-01	5.00E-03	4.01E-05	4.06E-01	1.20E-03	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
				0.00E+00	0.00E+00	0.00E+00	0.00E+00
			Totals	4.06E-01	1.20E-03	0.00E+00	

Use the substance dropdown list in the CAS# Finder to locate CAS# of substances.				
Substance	CAS# Finder			
Hexane	110543			

Unit and Process#	Unknown Rest					
Operating Hours hr/yr	4,380.00					
Receptor Proximity and Proximity	Cancer	Chronic	Acute		Г	
Factors	Score	Score	Score	Max Score	R	
0< R<100 1.000	4.06E-01	1.20E-03	0.00E+00	4.06E-01	s	
100≤R<250 0.250	1.01E-01	3.01E-04	0.00E+00	1.01E-01	ı	
250≤R<500 0.040	1.62E-02	4.81E-05	0.00E+00	1.62E-02	re	
500≤R<1000 0.011	4.46E-03	1.32E-05	0.00E+00	4.46E-03	uı	
1000≤R<1500 0.003	1.22E-03	3.61E-06	0.00E+00	1.22E-03	if	
1500≤R<2000 0.002	8.11E-04	2.41E-06	0.00E+00	8.11E-04	ı	
2000 <r 0.001<="" th=""><th>4.06E-04</th><th>1.20E-06</th><th>0.00E+00</th><th>4.06E-04</th><th>ı</th></r>	4.06E-04	1.20E-06	0.00E+00	4.06E-04	ı	
	Enter the uni	t's CAS# of the	substances emi	itted and their		
Unknown Restaurant 2	amounts.					

Receptor proximity is in meters. Priortization scores are calculated by multiplying the total scores summed below by the proximity factors. Record the Max score for your receptor distance. If the substance list for the unit is longer than the number of rows here or if there are multiple processes use additional worksheets and sum the totals of the Max Scores.

	Enter the unit's CAS# of the substances emitted and their				Prioritzation score for each substance			
Unknown Restaurant 2	amounts.				generated	below. Totals o	n last row.	
		Annual	Maximum	Average				
		Emissions	Hourly	Hourly				
Substance	CAS#	(lbs/yr)	(lbs/hr)	(lbs/hr)	Cancer	Chronic	Acute	
PAHs	1151	7.57E-04	3.78E-04	1.73E-07	0.00E+00	0.00E+00	0.00E+00	
Napthalene	91203	1.70E-01	8.50E-02	3.88E-05	0.00E+00	0.00E+00	0.00E+00	
Diesel engine exhaust, particulate matter (Diesel PM)	9901	1.76E-01	5.00E-03	4.01E-05	4.06E-01	1.20E-03	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
				0.00E+00	0.00E+00	0.00E+00	0.00E+00	
			Totals	4.06E-01	1.20E-03	0.00E+00		

Use the substance dropdown list in the CAS# Finder to locate CAS# of substances.					
Substance	CAS# Finder				
Barium	7440393				

	Convenience Market with Gas Station	Panda Express	Unknown Restaurant 1	Unknown Restaurant 2	
Receptor Proximity and Proximity					Total Max
Factors	Max Score	Max Score	Max Score	Max Score	Score
0< R<100 1.000	1.30E+00	4.06E-01	4.06E-01	4.06E-01	2.51E+00
100≤R<250 0.250	3.24E-01	1.01E-01	1.01E-01	1.01E-01	6.28E-01
250≤R<500 0.040	5.18E-02	1.62E-02	1.62E-02	1.62E-02	1.01E-01
500≤R<1000 0.011	1.43E-02	4.46E-03	4.46E-03	4.46E-03	2.76E-02
1000≤R<1500 0.003	3.89E-03	1.22E-03	1.22E-03	1.22E-03	7.54E-03
1500≤R<2000 0.002	2.59E-03	8.11E-04	8.11E-04	8.11E-04	5.03E-03
2000 <r 0.001<="" th=""><th>1.30E-03</th><th>4.06E-04</th><th>4.06E-04</th><th>4.06E-04</th><th>2.51E-03</th></r>	1.30E-03	4.06E-04	4.06E-04	4.06E-04	2.51E-03

GASOLINE SPECIATION

		VOC Emissions Calculations	Gallons /		Lbs	/ Yr	
Scenario	Type	Description	Year	Loading	Breathing	Refueling	Spillage
1	Aboveground	No Controls	0	0.00	0.00	0.00	0.00
2	Aboveground	Pahse I Only	0	0.00	0.00	0.00	0.00
3A	Aboveground	Phase I & II w/o Vent Values (90% Controls Breathing & Refueling)	0	0.00	0.00	0.00	0.00
3B	Aboveground	Phase I & II w/ Vent Values (90% Controls Breathing & Refueling)	0	0.00	0.00	0.00	0.00
4	Underground	No Controls	0	0.00	0.00	0.00	0.00
5A	Underground	Phase I Only	0	0.00	0.00	0.00	0.00
5B	Underground	Phase I w/ Vent Values	0	0.00	0.00	0.00	0.00
6A	Underground	Phase I & II w/o Vent Values (90% Controls Breathing & Refueling)		0.00	0.00	0.00	0.00
6B	Aboveground No Controls Aboveground Pahse I Only Aboveground Phase I & II w/o Vent Values (90% Controls Breathing & Refueling) Aboveground Phase I & II w/ Vent Values (90% Controls Breathing & Refueling) Underground No Controls Underground Phase I Only Underground Phase I w/ Vent Values		1,400,000	117.60	35.00	588.00	588.00

Toxic	Emissions	Loading (Lb/Yr)			Bre	Breathing (Lb/Yr)			efueling (Lb/	Yr)	Sp	illage (Lb/\	/ r)	
Scenario	Туре	Benzene	Toluene	Xylene	Benzene	Toluene	Xylene	Benzene	Toluene	Xylene	Benzene	Toluene	Xylene	
1	Aboveground	0	0	0	0	0	0	0	0	0	0	0	0	
2	Aboveground	0	0	0	0	0	0	0	0	0	0	0	0	
3A	Aboveground	0	0	0	0	0	0	0	0	0	0	0	0	
3B	Aboveground	0	0	0	0	0	0	0	0	0	0	0	0	
4	Underground	0	0	0	0	0	0	0	0	0	0	0	0	
5A	Underground	0	0	0	0	0	0	0	0	0	0	0	0	
5B	Underground	0	0	0	0	0	0	0	0	0	0	0	0	
6A	Underground	0	0	0	0	0	0	0	0	0	0	0	0	
6B	Underground	0.3528	9.408	2.8224	0.105	2.8	0.84	1.764	47.04	14.112	1.764	47.04	14.112	

FRESNO METROPOLITAN FLOOD CONTROL DISTRICT NOTICE OF REQUIREMENTS

Page 1 of 4

PUBLIC AGENCY

JARRED OLSEN DEVELOPMENT SERVICES/PLANNING CITY OF FRESNO 2600 FRESNO STREET, THIRD FLOOR **FRESNO, CA 93721**

DEVELOPER

GEORGE GRIM, CENTERLINE DESIGN LLC. 1508 TOLLHOUSE RD., SUITE C CLOVIS, CA 93611

No. 2018-022

PROJECT NO: 2018-02233

ADDRESS:

2999 S ORANGE AVE.

APN:

487-140-32

SENT. 10/30/10

Drainage Area(s)	Preliminary Fee(s)	Development Review Service Charge(s)	Fee(s)	
AW1	\$0.00	NOR Review	\$128.00	To be paid prior to release of District comments to Public Agency and Developer.
		Grading Plan Review	\$653.00	Amount to be submitted with first grading plan submitta

Total Drainage Fee: \$0.00 Total Service Charge: \$781.00

The proposed development will generate storm runoff which produces potentially significant environmental impacts and which must be properly discharged and mitigated pursuant to the California Environmental Quality Act and the National Environmental Policy Act. The District in cooperation with the City and County has developed and adopted the Storm Drainage and Flood Control Master Plan. Compliance with and implementation of this Master Plan by this development project will satisfy the drainage related CEQA/NEPA impact of the project mitigation requirements.

Pursuant to the District's Development Review Fee Policy, the subject project shall pay review fees for issuance of this Notice of Requirements (NOR) and any plan submittals requiring the District's reviews. The NOR fee shall be paid to the District by Developer before the Notice of Requirement will be submitted to the City. The Grading Plan fee shall be paid upon first submittal. The Storm Drain Plan fee shall be paid prior to return/pick up of first submittal.

The proposed development shall pay drainage fees pursuant to the Drainage Fee Ordinance prior to issuance of a building permit at the rates in effect at the time of such issuance. The fee indicated above is valid through 2/28/19 based on the site plan submitted to the District on 10/18/18 Contact FMFCD for a revised fee in cases where changes are made in the proposed site plan which materially alter the proposed impervious area.

Considerations which may affect the fee obligation(s) or the timing or form of fee payment:

- Fees related to undeveloped or phased portions of the project may be deferrable. a.)
- Fees may be calculated based on the actual percentage of runoff if different than that typical for the zone district under which the development is being undertaken and if permanent provisions are made to assure that the site remains in that b.) configuration.
- Master Plan storm drainage facilities may be constructed, or required to be constructed in lieu of paying fees. c.)
- The actual cost incurred in constructing Master Plan drainage system facilities is credited against the drainage fee d.) obligation.
- When the actual costs incurred in constructing Master Plan facilities exceeds the drainage fee obligation, e.) reimbursement will be made for the excess costs from future fees collected by the District from other development.
- Any request for a drainage fee refund requires the entitlement cancellation and a written request addressed to the General Manager of the District within 60 days from payment of the fee. A non refundable \$300 Administration fee or f.) 5% of the refund whichever is less will be retained without fee credit.

FRESNO METROPOLITAN FLOOD CONTROL DISTRICT NOTICE OF REQUIREMENTS

Page 2 of 4

Approval of this development shall be conditioned upon compliance with these District Requirements. X a. Drainage from the site shall BE DIRECTED TO ORANGE AND/OR NORTH AVENUE. 1. b. Grading and drainage patterns shall be as identified on Exhibit No. The grading and drainage patterns shown on the site plan conform to the adopted Storm Drainage and Flood Control Master Plan. The proposed development shall construct and/or dedicate Storm Drainage and Flood Control Master Plan facilities CUP No. 2018-0223 2. located within the development or necessitated by any off-site improvements required by the approving agency: Developer shall construct facilities as shown on Exhibit No. 1 as _X_ None required. The following final improvement plans and information shall be submitted to the District for review prior to final 3. development approval: Grading Plan _X_ Street Plan _X_ Storm Drain Plan Water & Sewer Plan Final Map Drainage Report (to be submitted with tentative map) Other None Required Availability of drainage facilities: 4. Permanent drainage service is available provided the developer can verify to the satisfaction of the City that runoff can be safely conveyed to the Master Plan inlet(s). b. The construction of facilities required by Paragraph No. 2 hereof will provide permanent drainage service. Permanent drainage service will not be available. The District recommends temporary facilities until permanent service is available. d. See Exhibit No. 2. The proposed development: 5. Appears to be located within a 100 year flood prone area as designated on the latest Flood Insurance Rate Maps available to the District, necessitating appropriate floodplain management action. (See attached Floodplain Policy.) Does not appear to be located within a flood prone area. X The subject site contains a portion of a canal or pipeline that is used to manage recharge, storm water, 6. and/or flood flows. The existing capacity must be preserved as part of site development. Additionally, site development may not interfere with the ability to operate and maintain the canal or pipeline.

FRESNO METROPOLITAN FLOOD CONTROL DISTRICT NOTICE OF REQUIREMENTS

Page 3 of 4

- 7. The Federal Clean Water Act and the State General Permits for Storm Water Discharges Associated with Construction and Industrial Activities (State General Permits) require developers of construction projects disturbing one or more acres, and discharges associated with industrial activity not otherwise exempt from National Pollutant Discharge Elimination System (NPDES) permitting, to implement controls to reduce pollutants, prohibit the discharge of waters other than storm water to the municipal storm drain system, and meet water quality standards. These requirements apply both to pollutants generated during construction, and to those which may be generated by operations at the development after construction.
- 777

No. 2018-02233

- a. State General Permit for Storm Water Discharges Associated with Construction Activities, effective July 1, 2010, as amended. A State General Construction Permit is required for all clearing, grading, and disturbances to the ground that result in soil disturbance of at least one acre (or less than one acre) if part of a larger common plan of development or sale). Permittees are required to: submit a Notice of Intent and Permit Registration Documents to be covered and must pay a permit fee to the State Water Resources Control Board (State Board), develop and implement a storm water pollution prevention plan, eliminate non-storm water discharges, conduct routine site inspections, train employees in permit compliance, and complete an annual certification of compliance.
- b. State General Permit for Storm Water Discharges Associated with Industrial Activities, April, 2014 (available at the District Office). A State General Industrial Permit is required for specific types of industries described in the NPDES regulations or by Standard Industrial Classification (SIC) code. The following categories of industries are generally required to secure an industrial permit: manufacturing; trucking; recycling; and waste and hazardous waste management. Specific exemptions exist for manufacturing activities which occur entirely indoors. Permittees are required to: submit a Notice of Intent to be covered and must pay a permit fee to the State Water Resources Control Board, develop and implement a storm water pollution prevention plan, eliminate non-storm water discharges, conduct routine site inspections, train employees in permit compliance, sample storm water runoff and test it for pollutant indicators, and annually submit a report to the State Board.
- c. The proposed development is encouraged to select and implement storm water quality controls recommended in the Fresno-Clovis Storm Water Quality Management Construction and Post-Construction Guidelines (available at the District Office) to meet the requirements of the State General Permits, eliminate the potential for non-storm water to enter the municipal storm drain system, and where possible minimize contact with materials which may contaminate storm water runoff.
- A requirement of the District may be appealed by filing a written notice of appeal with the Secretary of the District within ten days of the date of this Notice of Requirements.
- 9. The District reserves the right to modify, reduce or add to these requirements, or revise fees, as necessary to accommodate changes made in the proposed development by the developer or requirements made by other agencies.

10. <u>X</u> See Exhibit No. 2 for additional comments, recommendations and requirements.

FOR

Debbie Campbell

Design Engineer

Gary W. Chapman

Project Engineer

FRESNO METROPOLITAN FLOOD CONTROL DISTRICT NOTICE OF REQUIREMENTS

Page 4 of 4

CC:
NEIL ANGELILLO, KETTLEMAN 99 PL.
1155 W. SHAW AVE., SUITE 104
FRESNO, CA 93711
JOE PEHANICK, NORNGE, LLC
2200 HUNTINGTON DR., SUITE C
FAIRFIELD, CA 94533

OTHER REQUIREMENTS <u>EXHIBIT NO. 2</u>

There is an existing twenty-foot (20') wide storm drain easement near the east property line of CUP 2018-02233. No encroachments into the easement shall be permitted including, but not limited to, foundations, roof overhangs, swimming pools, and trees.

In an effort to improve storm runoff quality, outdoor storage areas shall be constructed and maintained such that material that may generate contaminants will be prevented from contact with rainfall and runoff and thereby prevent the conveyance of contaminants in runoff into the storm drain system.

The District encourages, but does not require that roof drains from non-residential development be constructed such that they are directed onto and through a landscaped grassy swale area to filter out pollutants from roof runoff.

Runoff from areas where industrial activities, product, or merchandise come into contact with and may contaminate storm water must be treated before discharging it off-site or into a storm drain. Roofs covering such areas are recommended. Cleaning of such areas by sweeping instead of washing is to be required unless such wash water can be directed to the sanitary sewer system. Storm drains receiving untreated runoff from such areas shall not be connected to the District's system. Loading docks, depressed areas, and areas servicing or fueling vehicles are specifically subject to these requirements. The District's policy governing said industrial site NPDES program requirements is available on the District's website at: www.fresnofloodcontrol.org or contact the District's Environmental Department, Daniel Rourke, for further information regarding these policies related to industrial site requirements.

Development No. <u>CUP 2018-02233</u>

DPU Water

- 1. On-site water facilities shall remain private.
- 2. The water supply requirements for this project are as follows:
 - a. The existing property is currently served with six 2-inch water meters.
 - b. If the total domestic, commercial, industrial and irrigation water demands for the applicant's proposed project can be accommodated with the existing six 2-inch water meters, then the applicant shall not be required to pay a Water Capacity Fee Charge.
 - c. If the total domestic, commercial, industrial and irrigation water demands for the applicant's proposed project cannot be accommodated with the six 2-inch water meters, and an additional water meter or a larger water meter is required, then the applicant shall be required to pay a Water Capacity Fee Charge.
 - d. If a larger water meter or fire service is required to accommodate the new, larger water demands, then the Water Capacity Fee Charge shall be calculated by subtracting the Water Capacity Fee Charge associated with the existing water meter size from the Water Capacity Fee Charge associated with the larger water meter size required for the applicant's project. The Water Capacity Fee Charges for different meter sizes are published in the City's Master Fee Schedule.
 - e. The City reserves the right to require an applicant to increase or decrease the size of a water meter for a project or a property to ensure that the meter is properly sized to accommodate fire protection requirements, and to allow for accurate volumetric flow measurements at low- and high-flow conditions.
 - f. The Water Capacity Fee Charge for any new or expanded service connection shall be payable prior to the issuance of a building permit at the fee level in effect on the date such permit is issued.
- 3. The project applicant shall be required to pay all other water-related fees and charges in accordance with the City's Master Fee Schedule and Municipal Code.

DPU Sewer

The nearest sanitary sewer main to serve the proposed project is an 8-inch sewer main located in South Orange Avenue. Sanitary sewer facilities are available to provide service to the site subject to the following requirements:

- 1. Street easements and/or deeds shall be recorded prior to approval of improvement plans.
- 2. Installation of sewer house branch(s) shall be required.
- 3. Separate sewer house branches are required for each lot.
- 4. Connection to the existing 66-inch and 57-inch sewer trunk in E. North Avenue shall not be allowed.
- 5. Street work permit is required for any work in the Right-of-Way.
- 6. On-site sanitary sewer facilities shall be private.
- 7. A cross access agreement is required for sewer service(s) crossing parcels
- 8. Abandon any existing on-site private septic systems.
- 9. The Project Developer shall contact Wastewater Management Division/Environmental Services at (559) 621-5100 prior to pulling building permits regarding conditions of service for special users.

Sanitary Sewer Fees

The following Sewer Connection Charges are due and shall be paid for the Project:

- 1. Sewer Lateral Charge.
- 2. Sewer Oversize Area.
- 3. Sewer Facility Charge (Non-Residential)

- 4. Upon connection of this Project to the City Sewer System the owner shall be subject to payment of Sewer Facility charges per Fresno Municipal Code Sections 6-304 and 6-305. Sewer Facility Charges consist of two components, a Wastewater Facilities Charge and Trunk Sewer Charge where applicable.
- 5. Sewer Facility Charges are collected after occupancy on a monthly basis over time based on metered (water or sewer effluent) usage. The developer may contact the Department of Public Utilities/Wastewater-Environmental Control at (559) 621-5153 to receive an estimated cost of the Sewer Facility Charges applicable to the project (based on a constant sewer discharge and loading (Biochemical Oxygen Demand [BOD] and Total Suspended Solids [TSS] levels anticipated) at the current rates in effect, at that time, per Fresno's Master Fee Resolution. The developer shall provide data regarding estimated sewer discharge rates [flow] and loading [BOD/TSS levels] required for calculating the estimated charges.

Fresno County Department of Public Health

Recommended Conditions of Approval For Proposed Phase 1 Project:

- 1. Prior to issuance of building permits, the applicants will be required to submit complete food facility plans and specifications to the Fresno County Department of Public Health, Environmental Health Division, for review and approval. Contact the Consumer Food Protection Program at (559) 600-3357 for more information.
- 2. Prior to operation, the applicants shall apply for and obtain permits to operate a food facility from the Fresno County Department of Public Health, Environmental Health Division. A permit, once issued, is nontransferable. Contact the Consumer Food Protection Program at (559) 600-3357 for more information.
- 3. Should alcohol sales be proposed, the applicant(s) shall first obtain their license to sell alcoholic beverages. Contact the California Alcoholic Beverage Control Department at (559) 225-6334 for more information.
- 4. Facilities that use and/or store hazardous materials and/or hazardous wastes shall meet the requirements set forth in the California Health and Safety Code (HSC), Division 20, Chapter 6.95, and the California Code of Regulations (CCR), Title 22, Division 4.5. Your proposed business will handle hazardous materials and/or hazardous waste and will be required to submit a Hazardous Materials Business Plan pursuant to the HSC, Division 20, Chapter 6.95 (http://cers.calepa.ca.gov/) For more information please contact the local Certified Unified Program Agency (CUPA) at (559) 600-3271.
- 5. Prior to the issuance of building permits, the applicant shall submit three (3) sets of complete plans and specifications regarding the installation of any underground storage tanks to the Fresno County Department of Public Health, Environmental Health Division. Contact the Certified Unified Program Agency (CUPA), at (559) 600-3271 for more information.
- 6. Prior to operations, the fuel facility applicant shall apply for and secure a Permit to Operate an Underground Storage Tank System from the Fresno County Department of Public Health, Environmental Health Division. Contact the Certified Unified Program Agency at (559) 600-3271 for more information.
- 7. The proposed construction project has the potential to expose nearby residents to elevated noise levels. Consideration should be given to your City's municipal code.

Comments/Concerns:

1. Since specific retail/commercial tenants for this application have not been identified, the full range of 'IH' zoning uses for Phase 2 must be considered. The potential adverse impacts could include (but are not limited to) storage of hazardous materials and/or wastes, medical waste, solid waste, water quality degradation, excessive noise, and odors.

Recommended Conditions of Approval for Retail Uses:

- 1. If retail food establishments are proposed, then prior to issuance of building permits. The tenant shall submit complete food facility plans and specifications to the Fresno County Department of Public Health, Environmental Health Division, for review and approval. Prior to operation, the applicant(s) shall apply for and obtain a permit to operate a food facility from the Fresno County Department of Public Health, Environmental Health Division. A permit, once issued, is nontransferable. Contact the Consumer Food Protection Program at (559) 600-3357 for more information.
- 2. Prior to operation, future tenants may be required to apply for and obtain a license to sell alcoholic beverages. Contact the California Alcoholic Beverage Control Department at (559) 225-6334 for more information.
- 3. If the applicant(s) propose to use and/or store hazardous materials and/or hazardous wastes, they shall meet the requirements set forth in the California Health and Safety Code (HSC), Division 20, Chapter 6.95, and the California Code of Regulations (CCR), Title 22, Division 4.5. Any business that handles a hazardous material or hazardous waste may be required to submit a Hazardous Materials Business Plan.

Appendix B

Energy Calculations

On-road Mobile (Operational) Energy Usage

Note: For the sake of simplicity, it was assumed that passenger vehicles, light duty trucks, motorcycles, and mobile homes use gasoline, and all medium-duty trucks, heavy-duty trucks, and buses use diesel fuel.

Site preparation, and grading energy were used as the basis of this calculation.

Unmitigated:

Step 1: Total Net Daily Trips (provided by Fehr & Peers)

7,965

C-W C-C C-NW Trip Length (miles) (provided by CalEEMod)

2.20% 78.80% 19.00% Fast Food , Convenience Market w/ Gas (6,326 daily trips)

16.60% 64.40% 19.00% Strip Mall (1,639 daily trips)

5.16% 75.84% 19.00% These are weighted averages of the above land uses based on the trip generation

Average Trip Length (weighted average)

4.1526

Therefore:

Average Daily VMT:

33,076

Step 2: Given:

Fleet Mix (provided by CalEEMod v2016.3.2)

- 1	DA	LDT1	LDT2	MDV	LH	D1 LHD2	MHI	D HHD	OBUS	UBUS	MCY		SBUS ME	I
	59.3%	6 4.0	0% 20.	3%	12.7%	1.8%	0.0%	0.0%	0.0%	0.2%	0.2%	0.5%	0.1%	0.0% Fast Food , Convenience Market w/ Gas (6,326 daily trips)
	62.3%	3.6	5% 21.	2%	10.4%	1.3%	0.0%	0.1%	0.0%	0.2%	0.1%	0.5%	0.1%	0.0% Strip Mall (1,639 daily trips)
	59.9%	3.9	9% 20.	9%	12.2%	1.7%	0.0%	0.0%	0.0%	0.2%	0.2%	0.5%	0.1%	0.0% These are weighted averages of the above land uses based on the trip generation

And:

Gasoline MPG Factors for each Vehicle Class (from EMFAC2014) - Year 2020

LDA	LD	T1	LDT2	MDV	MCY	MH	C	BUS
	29.6	24.46	21.75		15.67	37.84	6.56	6.49

Diesel MPG Factors for each Vehicle Class (from EMFAC2014) - Year 2020

LHD1	LH	ID2	MHD	HHD	UBUS	SBUS
	17.22	15.55	8.05	5.47	4.65	7.22

Therefore:

Weighted Average MPG Factors

Gasoline: Diesel: 15.5

Therefore: Step 3:

1,242 daily gallons of gasoline 47 daily gallons of diesel

453,189 annual gallons of gasoline 17,118 annual gallons of diesel

On-road Mobile (Construction) Energy Usage - Site Preparation

Site preparation, and grading energy were used as the basis of this calculation.

Step 1: Total Daily Worker Trips (provided by CalEEMod)

4

Worker Trip Length (miles) (provided by CalEEMod)

10.8

Therefore:

Average Worker Daily VMT:

518

Step 2: Given:

Assumed Fleet Mix for Workers

LDA LDT1 LDT2

0.3333333 0.3333333 0.3333333

And:

Gasoline MPG Factors for each Vehicle Class (from EMFAC2014) - Year 2020

LDA LDT1 LDT2

29.6 24.46 21.75

Therefore:

Weighted Average Worker MPG Factor

25.3

Step 3: **Therefore:**

20.5 Worker daily gallons of gasoline

Step 4: 6 # of Days (see CalEEMod)

Therefore:

Result: 123 Total gallons of gasoline

On-road Mobile (Construction) Energy Usage - Grading

Site preparation, and grading energy were used as the basis of this calculation.

Step 1: Total Daily Worker Trips (provided by CalEEMod)

48

Worker Trip Length (miles) (provided by CalEEMod)

10.8

Therefore:

Average Worker Daily VMT:

518

Step 2: Given:

Assumed Fleet Mix for Workers

LDA LDT1 LDT2

0.3333333 0.3333333 0.33333333

And:

Gasoline MPG Factors for each Vehicle Class (from EMFAC2014) - Year 2020

LDA LDT1 LDT2

29.6 24.46 21.75

Therefore:

Weighted Average Worker MPG Factor

25.3

Step 3: **Therefore:**

20.5 Worker daily gallons of gasoline

Step 4: 12 # of Days (see CalEEMod)

Therefore:

Result: 246 Total gallons of gasoline

On-road Mobile (Construction) Energy Usage - Building Construction

600 # of Days (see CalEEMod)

37,182 Total gallons of gasoline

Step 4:

Therefore:

Site preparation, and grading energy were used as the basis of this calculation. Step 1: Total Daily Worker Trips (provided by CalEEMod) Total Daily Vendor Trips (provided by CalEEMod) Total Daily Hauler Trips (provided by CalEEMod) 145 63 Worker Trip Length (miles) (provided by CalEEMod) Vendor Trip Length (miles) (provided by CalEEMod) Hauling Trip Length (miles) (provided by CalEEMod) Therefore: Average Worker Daily VMT: Average Vendor Daily VMT: Average Hauling Daily VMT: 1,566.00 460 Step 2: Given: Assumed Fleet Mix for Workers LDT1 LDT2 **Assumed Fleet Mix for Vendors** MHD HHD 0.5 0.5 MPG Factors for each Vehicle Class (from EMFAC2014) - Year 2020 Gasoline: Diesel: LDA LDT1 MHD LDT2 HHD 29.6 24.46 21.75 8.05 5.47 Therefore: Weighted Average Worker (Gasoline) MPG Factor Weighted Average Vendor (Diesel) MPG Factor Weighted Average Hauling MPG Factor 25.3 6.8 0.0 Therefore: Therefore: Step 3: 62 Worker daily gallons of gasoline 68 Vendor daily gallons of diesel

40,820 Total gallons of diesel

Therefore:

On-road Mobile (Construction) Energy Usage - Paving

Site preparation, and grading energy were used as the basis of this calculation.

Step 1: Total Daily Worker Trips (provided by CalEEMod)

75

Worker Trip Length (miles) (provided by CalEEMod)

10.8

Therefore:

Average Worker Daily VMT:

810

Step 2: Given:

Assumed Fleet Mix for Workers

LDA LDT1 LDT2

0.3333333 0.3333333 0.3333333

And:

Gasoline MPG Factors for each Vehicle Class (from EMFAC2014) - Year 2020

LDA LDT1 LDT2

29.6 24.46 21.75

Therefore:

Weighted Average Worker MPG Factor

25.3

Step 3: **Therefore:**

32.1 Worker daily gallons of gasoline

Step 4: 30 # of Days (see CalEEMod)

Therefore:

Result: 962 Total gallons of gasoline

On-road Mobile (Construction) Energy Usage - Architectural Coating

Site preparation, and grading energy were used as the basis of this calculation.

Step 1: Total Daily Worker Trips (provided by CalEEMod)

28

Worker Trip Length (miles) (provided by CalEEMod)

10.8

Therefore:

Average Worker Daily VMT:

302

Step 2: Given:

Assumed Fleet Mix for Workers

LDA LDT1 LDT2

0.3333333 0.3333333 0.3333333

And:

Gasoline MPG Factors for each Vehicle Class (from EMFAC2014) - Year 2020

LDA LDT1 LDT2

29.6 24.46 21.75

Therefore:

Weighted Average Worker MPG Factor

25.3

Step 3: **Therefore:**

12.0 Worker daily gallons of gasoline

Step 4: 30 # of Days (see CalEEMod)

Therefore:

Result: 359 Total gallons of gasoline

Appendix C

Traffic Impact Analysis

Draft Traffic Impact Analysis

Commercial Development

At the Northeast Corner of North Avenue and Orange Avenue In the City of Fresno, CA

Prepared For:

True North Properties 1155 W. Shaw Ave., Ste. 104 Fresno, CA 93711

January 12, 2018

Project No.: 004-051

Traffic Engineering, Transportation Planning, & Parking Solutions
1300 E. Shaw Ave., Ste. 103
Fresno, CA 93710
Phone: (559) 570-8991

hone: (559) 570-8991 www.JLBtraffic.com

Traffic Engineering, Transportation Planning, & Parking Solutions

Draft Traffic Impact Analysis

Commercial Development at the Northeast Corner of North Avenue and Orange Avenue

In the City of Fresno, CA

January 12, 2018

This Traffic Impact Analysis Report has been prepared under the direction of a licensed Traffic Engineer. The licensed Traffic Engineer attests to the technical information contained therein, and has judged the qualifications of any technical specialists providing engineering data from which recommendations, conclusions, and decisions are based.

Prepared By:

Jose Luis Benavides, P.E., T.E.

President

Traffic Engineering, Transportation Planning, & Parking Solutions
1300 E. Shaw Ave., Ste. 103
Fresno, CA 93710
Phone: (559) 570-8991

Phone: (559) 570-899 www.JLBtraffic.com

Table of Contents

Introduction and Summary	1
Introduction	1
Summary	
Existing Traffic Conditions	1
Existing plus Project Traffic Conditions	1
Near Term plus Project Traffic Conditions	
Cumulative Year 2035 No Project Traffic Conditions	
Cumulative Year 2035 plus Project Traffic Conditions	
Queuing Analysis	
Project Equitable Fair Share Impact Analysis	3
TIA Scope of Work	4
Study Facilities	4
Study Intersections	4
Study Scenarios	4
Existing Traffic Conditions	4
Existing plus Project Traffic Conditions	4
Near Term plus Project Traffic Conditions	5
Cumulative Year 2035 No Project Traffic Conditions	5
Cumulative Year 2035 plus Project Traffic Conditions	5
Level of Service Analysis Methodology	5
Criteria of Significance	5
Operational Analysis Assumptions and Defaults	6
Existing Traffic Conditions	7
Roadway Network	7
Results of Existing Level of Service Analysis	9
Traffic Signal Warrants	9
Existing plus Project Traffic Conditions	11
Project Description	11
Project Access	11
Bikeways	11

Transit	11
Trip Generation	12
Trip Distribution	12
Results of Existing plus Project Level of Service Analysis	12
Traffic Signal Warrants	13
Near Term plus Project Traffic Conditions	17
Description of Approved and Pipeline Projects	17
Results of Near Term plus Project Level of Service Analysis	19
Traffic Signal Warrants	20
Cumulative Year 2035 No Project Traffic Conditions	22
Results of Cumulative Year 2035 No Project Level of Service Analysis	22
Traffic Signal Warrants	23
Cumulative Year 2035 plus Project Traffic Conditions	25
Results of Cumulative Year 2035 plus Project Level of Service Analysis	25
Traffic Signal Warrants	25
Queuing Analysis	28
Project's Pro-Rata Fair Share of Future Transportation Improvements	31
Conclusions and Recommendations	32
Existing Traffic Conditions	32
Existing plus Project Traffic Conditions	32
Near Term plus Project Traffic Conditions	32
Cumulative Year 2035 No Project Traffic Conditions	33
Cumulative Year 2035 plus Project Traffic Conditions	33
Queuing Analysis	33
Project Equitable Fair Share Impact Analysis	33
Study Participants	34
Poforoncos	2.4

info@JLBtraffic.com

Page | iv

List of Figures

•	
Figure 1: Vicinity Map	ε
Figure 2: Existing - Traffic Volumes, Geometrics and Controls	10
Figure 3: Project Site Plan	14
Figure 4: 2017 Project Only Trips	15
Figure 5: Existing plus Project - Traffic Volumes, Geometrics and Controls	16
Figure 6: Near Term Projects' Trip Assignment	18
Figure 7: Near Term plus Project - Traffic Volumes, Geometrics and Controls	21
Figure 8: Cumulative Year 2035 No Project - Traffic Volumes, Geometrics and Controls	24
Figure 9: 2035 Project Only Trips	
Figure 10: Cumulative Year 2035 plus Project - Traffic Volumes, Geometrics and Controls	27
List of Tables	
Table I: Existing Intersection LOS Results	9
Table II: Project Only Trip Generation	17
Table III: Existing plus Project Intersection LOS Results	13
Table IV: Near Term Projects' Trip Generation	17
Table V: Near Term plus Project Intersection LOS Results	20
Table VI: Cumulative Year 2035 No Project Intersection LOS Results	23
Table VII: Cumulative Year 2035 plus Project Intersection LOS Results	
Table VIII: Queuing Analysis	28
Table IX: Project's Fair of Share of Future Roadway Improvements	31

List of Appendices

Appendix A: Scope of Work Appendix B: Traffic Counts Appendix C: Traffic Modeling Appendix D: Methodology

Appendix E: Existing Traffic Conditions

Appendix F: Existing plus Project Traffic Conditions
Appendix G: Near Term plus Project Traffic Conditions

Appendix H: State Route 99 at North and Cedar Concept and Funding

Appendix I: Cumulative Year 2035 No Project Traffic Conditions Appendix J: Cumulative Year 2035 plus Project Traffic Conditions

Appendix K: Signal Warrants

Introduction and Summary Introduction

This report describes a Traffic Impact Analysis (TIA) prepared by JLB Traffic Engineering, Inc. (JLB) for the Commercial Development (Project) located on a 3.92-acre property at the northeast corner of North Avenue and Orange Avenue in the City of Fresno. The Project proposes to construct a gasoline/service station (12 fueling positions) with convenience market, a 1,998 square-foot coffee/donut shop with drivethrough window, 2,992 square feet of fast-food restaurant without drive-through window, and 6,000 square feet of fast-food restaurant with drive-through window. Per information provided to JLB, the Project is consistent with the City of Fresno General Plan. Figure 1 shows the proposed Project relative to the surrounding roadway network.

The purpose of this TIA is to evaluate the potential traffic impacts, identify short-term roadway and circulation needs, determine potential mitigation measures, and identify any critical traffic issues that should be addressed in the ongoing planning process. The study primarily focused on evaluating traffic conditions at study intersections that may be impacted by the proposed Project. The scope of work was prepared via consultation with the City of Fresno, County of Fresno, and Caltrans staff.

Summary

The potential impacts of the proposed Project were evaluated in accordance with the standards set forth by the level of service (LOS) policies of the City of Fresno, County of Fresno, and Caltrans.

Existing Traffic Conditions

At present, all study intersections operate at an acceptable LOS during the AM and PM peak periods.

Existing plus Project Traffic Conditions

- A review of the existing Project site property lines and the Project driveways to be constructed indicate that the proposed access driveways are located at points that minimize traffic operational impacts to the existing roadway network.
- It is recommended that the Project implement Class II bike lanes along its frontage to North Avenue.
- At build-out, the Project is estimated to generate a maximum of 7,965 daily trips, 644 AM peak hour trips and 536 PM peak hour trips.
- Under this scenario, the intersection of North Avenue and State Route 99 SB Off-Ramp is projected to exceed its LOS threshold during the AM peak period. To improve the LOS at this intersection, it is recommended that the following improvements be implemented.
 - Add a southbound left-turn lane
 - Modify the southbound left-through lane to a through lane
 - Lengthen the short southbound flared right-turn lane to create a standard length right-turn lane
 - Signalize the intersection with protected left-turn phasing in the northbound and southbound directions and split phasing in the eastbound and westbound directions

www.JLBtraffic.com

info@JLBtraffic.com

Page | 1

Near Term plus Project Traffic Conditions

- The total trip generation for the Near Term Projects is 28,023 daily trips, 3,648 AM peak hour trips, and 3,780 PM peak hour trips.
- Under this scenario, the intersections of North Avenue and Orange Avenue, North Avenue and State Route 99 SB Off-Ramp, and North Avenue and Cedar Avenue are projected to exceed their respective LOS threshold during one or both peak periods. To improve the LOS at each of the intersections projected to exceed its LOS threshold, it is recommended that the following improvements be implemented.
 - North Avenue and Orange Avenue
 - Implement the improvements per the approved City of Fresno Street improvement plans as prepared for the Amazon Project.
 - North Avenue and State Route 99 SB Off-Ramp
 - Add a second eastbound through lane
 - Add a westbound left-turn lane
 - Modify the westbound left-through lane to a through lane
 - Add southbound dual left-turn lanes
 - Modify the southbound left-through lane to a through lane
 - Lengthen the southbound flared right-turn lane to create a standard length right-turn lane
 - Signalize the intersection with protected left-turn phasing in all directions
 - North Avenue and State Route 99 NB On-Ramp (improvements needed to improve queuing)
 - Add eastbound dual left-turn lanes
 - Modify the eastbound left-through lane to a through lane
 - Add a second eastbound through lane
 - Add a second westbound through lane
 - Signalize the intersection with protected left-turn phasing in all directions
 - North Avenue and Cedar Avenue
 - Convert the eastbound right-turn lane to a through-right lane
 - Add a second westbound through lane
 - Add a second northbound left-turn lane
 - Modify the traffic signal to accommodate the added lane geometrics

www.JLBtraffic.com

info@JLBtraffic.com

Page | 2

Cumulative Year 2035 No Project Traffic Conditions

- Under this scenario, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the following improvements be implemented.
 - North Avenue at Chestnut Avenue
 - Add an eastbound left-turn lane
 - Change the eastbound left-through-right lane to a through lane
 - Add an eastbound right-turn lane
 - Add a westbound left-turn lane
 - Change the westbound left-through-right lane to a through lane
 - Add a westbound right-turn lane
 - Modify the traffic signal to accommodate the added lane geometrics

Cumulative Year 2035 plus Project Traffic Conditions

 Under this scenario, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the same improvements presented in the Cumulative Year 2035 No Project Traffic Conditions scenario be implemented.

Queuing Analysis

• It is recommended that the City consider left- and right-turn lane storage lengths as indicated in the Queuing Analysis.

Project Equitable Fair Share Impact Analysis

It is recommended that the Project contribute its equitable fair share as presented in Table IX.

www.JLBtraffic.com

TIA Scope of Work

The study focused on evaluating traffic conditions at study intersections that may potentially be impacted by the proposed Project. On October 31, 2017, a draft scope of work for the preparation of a TIA for this Project was provided to the City of Fresno, County of Fresno, and Caltrans for their review and comment. On November 21, 2017, the County of Fresno requested that the TIA include in its analysis a Cumulative Year 2035 No Project scenario and that the intersection of North Avenue and Chestnut Avenue be added to the Scope of Work. On November 28, 2017, Caltrans approved the scope of work as presented. On December 8, 2017, the City of Fresno requested that the intersection of North Avenue and Cedar Avenue be added to the Scope of Work. Based on the comments received, this study includes the analysis of the additional scenario and intersections requested by the County of Fresno and City of Fresno. The TIA Draft Scope of Work and the comments received from the lead agency and responsible agencies are included in Appendix A.

Study Facilities

The study focused on evaluating traffic conditions at the existing study intersections that may potentially be impacted by the Project. Traffic counts were collected for the study intersections in April and May of 2016, with the exception of one count that was collected in December 2017. All counts were collected while schools in the vicinity of the proposed Project were in session. The traffic counts for the existing study facilities are contained in Appendix B. The existing intersection turning movement volumes, intersection geometrics, and traffic controls are illustrated in Figure 2.

Study Intersections

- 1. North Avenue / Orange Avenue
- 2. North Avenue / Project Driveway (limited right in, and right out access)
- North Avenue / State Route 99 Southbound (SB) Off-Ramp
- 4. North Avenue / State Route 99 Northbound (NB) On-Ramp
- 5. North Avenue / Cedar Avenue
- 6. North Avenue / Chestnut Avenue
- 7. State Route 99 Northbound (NB) Off-Ramp / Cedar Avenue
- 8. Parkway Drive / Cedar Avenue

Study Scenarios

Existing Traffic Conditions

This scenario evaluates the Existing Traffic Conditions based on existing traffic volumes and roadway conditions from traffic counts and field surveys conducted in the base year 2017.

Existing plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Existing plus Project Traffic Conditions. The Existing plus Project traffic volumes were obtained by adding the 2017 Project Only trips to the previous scenario. The 2017 Project Only trips were based on the Project Select Zone, communication with Caltrans, City of Fresno and County of Fresno staff, the existing roadway network and engineering judgment. The Fresno COG Modeling and Select Zone are contained in Appendix C.

www.JLBtraffic.com

Near Term plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Near Term plus Project Traffic Conditions. The Near Term plus Project traffic volumes were obtained by adding the Near Term related trips to the Existing plus Project Traffic Conditions scenario.

Cumulative Year 2035 No Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Cumulative Year 2035 No Project Traffic Conditions. The Cumulative Year 2035 No Project traffic volumes were obtained from the Fresno COG traffic model runs (Base Year 2016 and Cumulative Year 2035 No Project) and existing 2017 traffic counts. Under this scenario, the increment method, as recommended by the Model Steering Committee was utilized to determine the Cumulative Year 2035 No Project traffic volumes. JLB's conservative approach of upward volume balancing the 2035 increment resulted in a higher projection of volumes at the intersections adjacent to the interchange of State Route 99 with North Avenue. The Fresno COG traffic model runs are contained in Appendix C. It should be noted that, by year 2035, it is assumed that the interchange of North Avenue and State Route 99 has been reconstructed and that this will result in changes in travel patterns and volumes.

Cumulative Year 2035 plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Cumulative Year 2035 plus Project Traffic Conditions. The Cumulative Year 2035 plus Project traffic volumes were obtained by adding the 2035 Project Only trips to the Cumulative Year 2035 No Project Traffic Conditions scenario.

Level of Service Analysis Methodology

Level of Service (LOS) is a qualitative index of the performance of an element of the transportation system. LOS is a rating scale running from "A" to "F", with "A" indicating no congestion of any kind, and "F" indicating unacceptable congestion and delays. LOS in this study describes the operating conditions for signalized and unsignalized intersections.

The 2010 Highway Capacity Manual (HCM) is the standard reference published by the Transportation Research Board, and contains the specific criteria and methods to be used in assessing LOS. Synchro software was used to define LOS in this study. Details regarding these calculations are in Appendix D.

Criteria of Significance

The 2035 Fresno City General Plan has established various degrees of acceptable level of traffic congestion on its major streets and these are dependent on the four (4) Traffic Impact Zones (TIZ) within the City. The standard LOS threshold for TIZ I is LOS F, that for TIZ II is LOS E, that for TIZ III is LOS D and that for TIZ IV is LOS E. Additionally, the 2035 MEIR made findings of overriding consideration to allow a lower LOS threshold than that established by the underlying TIZ zone. For those cases in which a LOS criterion for a roadway segment differs from that of the underlying TIZ zone, such criteria are identified in the roadway description. All study facilities within the City of Fresno SOI fall within TIZ IV, and therefore LOS E is used to evaluate the potential significance of LOS impacts to intersections and segments within the City of Fresno's jurisdiction pursuant to the City of Fresno 2035 General Plan.

www.JLBtraffic.com

The County of Fresno has established LOS C as the acceptable level of traffic congestion on county roads and streets that fall entirely outside the Sphere of Influence (SOI) of a City. For those areas that fall within the SOI of a City, the LOS criteria of the City are the criteria of significance used in this report. LOS C is used to evaluate the potential significance of LOS impacts to Fresno County intersections and segments that fall outside the City of Fresno SOI. However, LOS D is used to evaluate the potential significance of LOS impacts to Fresno County intersections and segments within the SOI of the City of Fresno pursuant to the County of Fresno General Plan Policy TR-A.2.

Caltrans endeavors to maintain a target LOS at the transition between LOS C and D on State highway facilities consistent with the Caltrans Guide for the Preparation of Traffic Impact Studies, dated December 2002. However, Caltrans acknowledges that this may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS. In this case, LOS D was utilized for study intersections or segments within Caltrans jurisdiction.

Operational Analysis Assumptions and Defaults

The following operational analysis values, assumptions and defaults were used in this study. These default values ensured a consistent analysis of LOS among the various scenarios.

- Yellow time of 3.2 seconds for left-turn phases;
- Yellow time consistent with the California Manual of Uniform Traffic Control Devices (CA MUTCD) based on approach speeds;
- All-red clearance intervals of 1.0 second for all phases;
- Walk intervals of 7.0 seconds;
- Flashing Don't Walk based on 3.5 feet/second walking speed with yellow plus all-red clearance subtracted and 2.0 seconds added
- An average of 3 pedestrian calls per hour at signalized intersections;
- All new or modified signals utilize protected left-turn phasing;
- The heavy vehicle percentage factors utilized in this study varied from location to location based on actual count data. The heavy vehicle factors were three (3) percent of traffic entering or exiting the Project Driveway. These heavy vehicle factors for the study intersections can be found within the traffic count data and generally range from eight (8) to fifty (50) percent;
- At existing intersections, the observed approach Peak Hour Factor (PHF) is utilized in the Existing, Existing plus Project, and Near Term plus Project scenarios;
- A PHF of 0.92 (or the Existing PHF if higher) is utilized for all study intersections in both Cumulative Year 2035 scenarios; and
- New proposed study facilities utilize a PHF of 0.92 as recommended by the Highway Capacity Manual for rural and rural to urban transitions.

www.JLBtraffic.com

Existing Traffic Conditions Roadway Network

The Project site and surrounding study area are illustrated in Figure 1. Important roadways serving the Project site are discussed below.

North Avenue is an existing east-west major arterial adjacent to the proposed Project. North Avenue extends through the southern part of the City of Fresno and is a four-lane divided arterial between State Route 41 and Orange Avenue and a two-lane divided arterial east of Orange Avenue in the vicinity of the Project. The 2035 General Plan Circulation Element designates North Avenue as a two-lane divided arterial west of Fig Avenue, a four-lane divided arterial between Fig Avenue and Clovis Avenue, and a two-lane collector east of Clovis Avenue.

Orange Avenue is an existing north-south two-lane undivided collector adjacent to the proposed Project. In this area, Orange Avenue extends from Golden State Boulevard to the north and beyond the City of Fresno limits to the south. The 2035 General Plan Circulation Element designates Orange Avenue as a two-lane undivided collector south of Golden State Boulevard.

Parkway Drive is a northwest-southeast (diagonal) two-lane industrial collector in the vicinity of the proposed Project. In this area, Parkway Drive exists between North Avenue and Cedar Avenue and provides a direct connection to State Route 99. The 2035 General Plan Circulation Element designates this segment of Parkway Drive as a one-lane (one-way) collector. However, Caltrans has prepared some options for the reconfiguration of the interchange of North Avenue at State Route 99 that will likely retain Parkway Drive as a two-lane two-way collector.

Cedar Avenue is an existing north-south two-lane undivided collector near the vicinity of the proposed Project. In this area, Cedar Avenue extends south of Golden State Boulevard beyond the City of Fresno limits. The 2035 Fresno General Plan Circulation Element designates Cedar Avenue as a two-lane collector south of Golden State Boulevard.

Chestnut Avenue is predominantly an existing four-lane arterial. South of North Avenue, Chestnut Avenue falls outside the Sphere of Influence of the City of Fresno. The County of Fresno General Plan Circulation element designates Chestnut Avenue as an arterial north of Golden State Boulevard and as a collector south of Golden State Boulevard.

State Route (SR) 99 is an existing six-lane freeway near the vicinity of the proposed Project. SR 99 traverses the City of Fresno in a northwest-southeast direction and serves as the principal connection to various metropolitan areas within the Central San Joaquin Valley.

www.JLBtraffic.com

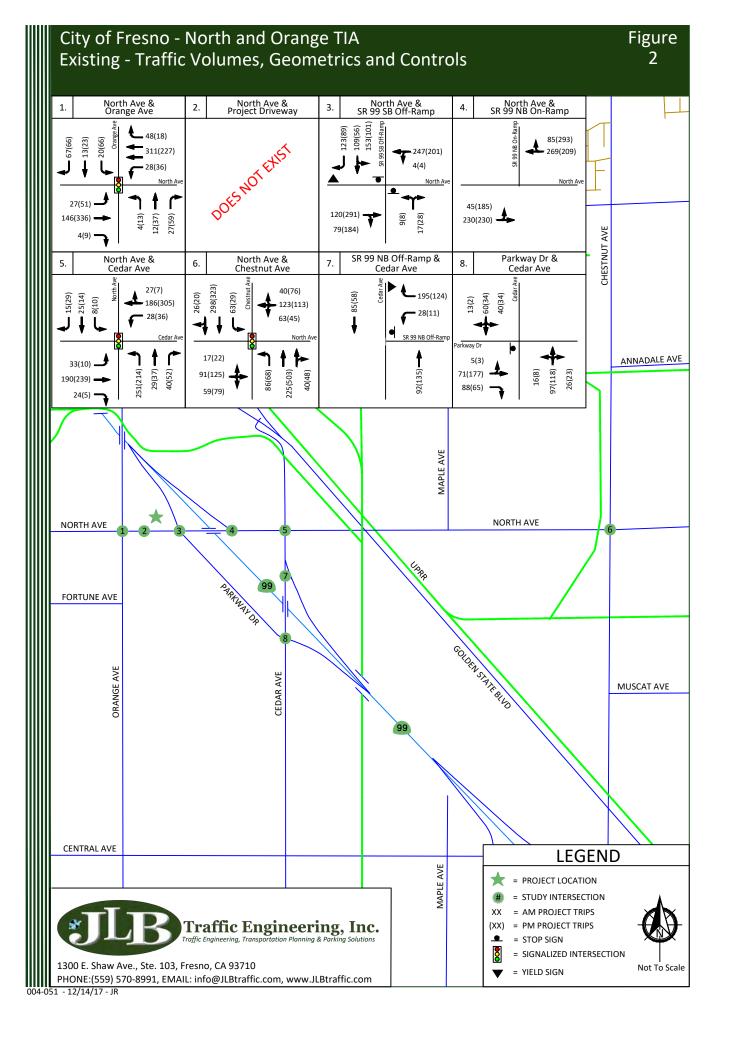
Results of Existing Level of Service Analysis

Figure 2 illustrates the Existing turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Existing Traffic Conditions scenario are provided in Appendix E. Table I presents a summary of the Existing peak hour LOS at the study intersections.

At present, all study intersections operate at an acceptable LOS during the AM and PM peak periods.

Table I: Existing Intersection LOS Results

			AM Peak H	our	PM Peak Hour		
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS	
1	North Avenue / Orange Avenue	Signalized	14.5	В	18.5	В	
2	North Avenue / Project Driveway	Does Not Exist	N/A	N/A	N/A	N/A	
3	North Avenue / State Route 99 SB Off-Ramp	Two-Way STOP	18.9	С	16.2	С	
4	North Avenue / State Route 99 NB On-Ramp	Unsignalized	1.7	Α	4.6	Α	
5	North Avenue / Cedar Avenue	Signalized	23.9	С	22.4	С	
6	North Avenue / Chestnut Avenue	Signalized	15.1	В	13.8	В	
7	State Route 99 NB Off-Ramp / Cedar Avenue	Two-Way STOP	10.5	В	10.0	В	
8	Parkway Drive / Cedar Avenue	Two-Way STOP	10.9	В	11.5	В	


Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized study intersections in the Existing Traffic Conditions scenario. These warrants are found in Appendix K. The effects of right-turning traffic from the minor approach onto the major approach were considered using engineering judgment pursuant to CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of North Avenue and State Route 99 SB Off-Ramp satisfies peak hour signal warrants during the AM and PM peak. Based on the signal warrants and engineering judgment, signalization of the intersection of North Avenue and State Route 99 SB Off-Ramp is not recommended at this time. It is worth noting that CA MUTCD states "satisfaction of a signal warrant or warrants shall not in itself require the installation of a traffic signal." Therefore, it is recommended that prior to the installation of a traffic signal, investigation of CA MUTCD warrants 1, 4, and 7, as applicable, be conducted for the intersection of North Avenue and State Route 99 SB Off-Ramp.

www.JLBtraffic.com

LOS for two-way and one-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Existing plus Project Traffic Conditions Project Description

The Project proposes to build a gasoline/service station (12 fueling positions) with convenience market, a 1,998 square-foot coffee/donut shop with drive-through window, 2,992 square feet of fast-food restaurant without drive-through window, and 6,000 square feet of fast-food restaurant with drive-through windows at the northeast corner of North Avenue and Orange Avenue in the City of Fresno. Per information provided to JLB, the Project is consistent with the City of Fresno General Plan. Figure 3 illustrates the latest Project Site Plan.

Project Access

Access to and from the Project site is from two (2) points. One of the access points is an existing, full access point located along the east side of Orange Avenue at a point approximately 250 feet north of North Avenue. The second access point is a proposed access located on the north side of North Avenue at a point approximately 350 feet east of Orange Avenue and is proposed as a right-in, right-out only access.

JLB analyzed the location of the proposed access points relative to the existing local roads and driveways in the Project's vicinity. A review of the existing Project site property lines and the Project driveways to be constructed indicate that the proposed access driveways are located at points that minimize traffic operational impacts to the existing roadway network.

Bikeways

Currently, bike lanes exist in the vicinity of the proposed Project. Class II bike lanes exist along North Avenue between Cherry Avenue and Orange Avenue and along Orange Avenue south of the State Route 99 Over Crossing and approximately 650 feet south of Fortune Avenue. The City of Fresno "Bicycle, Pedestrian & Trails Master Plan" recommends that Class II bike lanes be implemented on 1) North Avenue west of Cherry Avenue and east of Orange Avenue, 2) Orange Avenue between Golden State Boulevard and American Avenue, 3) Cedar Avenue between North Avenue and American Avenue, and 4) Chestnut Avenue north of North Avenue. Therefore, it is recommended that the Project implement Class II bike lanes along its frontage to North Avenue.

Transit

Fresno Area Express (FAX) is the transit operator in the City of Fresno. At present, there are no FAX transit routes that operate in the vicinity of the proposed Project. The closest is FAX Route 41 and runs on Maple Avenue and North Avenue, approximately 1.05 miles to the east of the proposed Project. Route 41 operates at 30-minute intervals on weekdays and 50-minute intervals on weekends. Its nearest stop to the Project site is located at the northeast corner of Maple Avenue and North Avenue. This route provides a direct connection to Manchester Transit Center, Duncan Polytech High School, Cedar/Clinton Library, California Christian College, Mosqueda Community Center, Fresno Pacific University, and Senior Citizen Village. Retention of the existing and expansion of future transit routes is dependent on transit ridership demand and available funding.

www.JLBtraffic.com

Trip Generation

Table II presents the trip generation for the proposed Project pursuant to the 10th Edition of the Trip Generation Manual with trip generation rates for a Gasoline/Service Station with Convenience Market, Coffee/Donut Shop with Drive-Through Window, Fast-Food Restaurant without Drive-Through Window, and Fast-Food Restaurant with Drive-Through Window. At build-out, the Project is estimated to generate a maximum of 7,965 daily trips, 644 AM peak hour trips and 536 PM peak hour trips.

Table II: Project Only Trip Generation

		Unit	Daily		AM Peak Hour						PM Peak Hour					
Land Use (ITE Code)	Size		Rate	Total	Trip	In	Out	In	Out	Total	Trip	In	Out	In	Out	Total
					Rate	9	%	""	Out		Rate	%		""	Out	Total
Gasoline/Service Station with Convenience Market (945)	12	f.p.	205.36	2,464	12.47	51	49	77	74	150	13.99	51	49	86	82	168
Coffee/Donut Shop with Drive-Through Window (937)	1.998	k.s.f.	820.38	1,639	88.99	51	49	91	87	178	43.38	50	50	44	43	87
Fast-Food Restaurant without Drive-Through Window (934)	2.992	k.s.f.	346.23	1,036	25.10	60	40	45	30	75	28.34	50	50	43	42	85
Fast-Food Restaurant with Drive-Through Window (934)	6.000	k.s.f.	470.95	2,826	40.19	51	49	123	118	241	32.67	52	48	102	94	196
Total Project Trips				7,965				336	309	644				275	261	536

Note:

f.p. = Fueling Positions

k.s.f. = Thousand Square Feet

Trip Distribution

The trip distribution assumptions were developed based on existing travel patterns, data provided by the developer, knowledge of the study area, the Fresno COG Select Zone Analysis, communication with the City of Fresno, County of Fresno and Caltrans, and knowledge of the City of Fresno and County of Fresno Circulation Elements. Figure 4 illustrates the 2017 Project Only Trips to the study intersections.

Results of Existing plus Project Level of Service Analysis

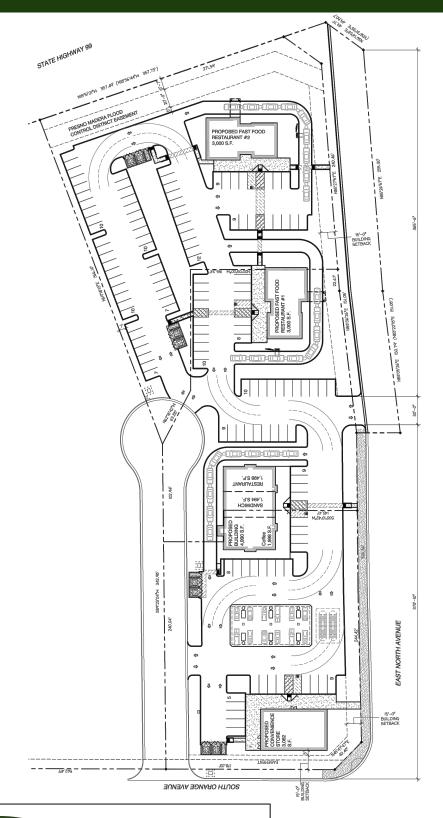
The Existing plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 5 illustrates the Existing plus Project turning movement volumes, intersection geometrics, and traffic controls. This scenario assumes that the existing roadway geometrics and traffic controls will remain in place with the exception that the Project's frontage to North Avenue would be developed to City of Fresno standards. LOS worksheets for the Existing plus Project Traffic Conditions scenario are provided in Appendix F. Table III presents a summary of the Existing plus Project peak hour LOS at the study intersections.

www.JLBtraffic.com

Under this scenario, the intersection of North Avenue and State Route 99 SB Off-Ramp is projected to exceed its LOS threshold during the AM peak period. To improve the LOS at this intersection, it is recommended that the following improvements be implemented.

- Add a southbound left-turn lane
- Modify the southbound left-through lane to a through lane
- Lengthen the short southbound flared right-turn lane to create a standard length right-turn lane
- Signalize the intersection with protected left-turn phasing in the northbound and southbound directions and split phasing in the eastbound and westbound directions

Table III: Existing plus Project Intersection LOS Results

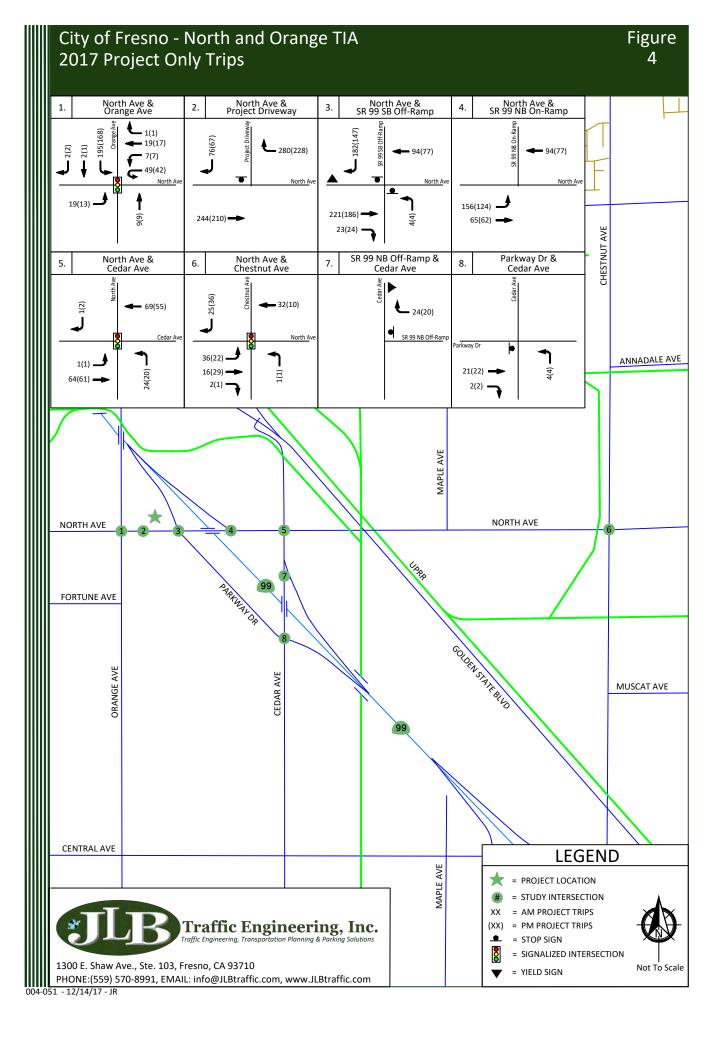

	Intersection	Intersection Control	AM Peak Hour		PM Peak Hour	
ID			Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	North Avenue / Orange Avenue	Signalized	24.0	С	37.6	D
2	North Avenue / Project Driveway	Two-Way STOP	11.6	В	10.6	В
3	North Avenue / State Route 99 SB Off-Ramp	Two-Way STOP	53.1	F	22.9	С
		Signalized (Mitigated)	51.2	D	32.1	С
4	North Avenue / State Route 99 NB On-Ramp	Unsignalized	5.3	Α	6.4	Α
5	North Avenue / Cedar Avenue	Signalized	25.8	С	29.3	С
6	North Avenue / Chestnut Avenue	Signalized	15.7	В	14.6	В
7	State Route 99 NB Off-Ramp / Cedar Avenue	Two-Way STOP	10.6	В	10.2	В
8	Parkway Drive / Cedar Avenue	Two-Way STOP	11.3	В	12.0	В

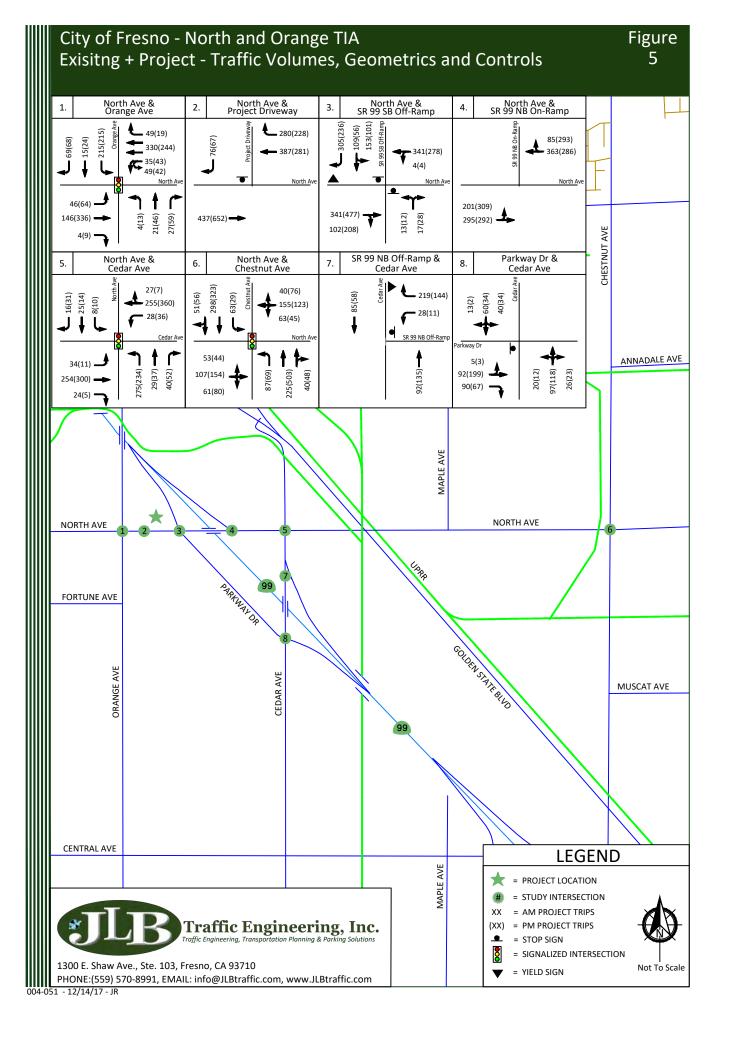
Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls

LOS for Two-Way and One-Way STOP controlled intersections are based on the worst approach/movement of the minor street.

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized study intersections in the Existing plus Project Traffic Conditions scenario. These warrants are found in Appendix K. The effects of right-turning traffic from the minor approach onto the major approach were considered using engineering judgment pursuant to CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of North Avenue and State Route 99 SB Off-Ramp satisfies peak hour signal warrants during the AM and PM peaks, while North Avenue and State Route 99 NB On-Ramp satisfies the PM peak hour signal warrant. Based on the signal warrants and engineering judgment, signalization of the intersection of North Avenue and State Route 99 SB Off-Ramp is recommended while that of North Avenue and State Route 99 NB On-Ramp is not. It is worth noting that CA MUTCD states "satisfaction of a signal warrant or warrants shall not in itself require the installation of a traffic signal." Therefore, it is recommended that prior to the installation of a traffic signal, investigation of CA MUTCD warrants 1, 4, and 7, as applicable, be conducted for the intersection of North Avenue and State Route 99 NB On-Ramp.




1300 E. Shaw Ave., Ste. 103, Fresno, CA 93710

PHONE:(559) 570-8991, EMAIL: info@JLBtraffic.com, www.JLBtraffic.com 004-051 - 12/12/17 - JR

Not To Scale

Near Term plus Project Traffic Conditions Description of Approved and Pipeline Projects

Approved and Pipeline Projects consist of developments that are either under construction, built but not fully occupied, are not built but have final site development review (SDR) approval, or for which the lead agency or responsible agencies have knowledge of. City of Fresno and County of Fresno staff were consulted throughout the preparation of this TIA regarding approved and/or known of projects that could potentially impact the study intersections.

On December 13, 2017, JLB staff conducted a reconnaissance of the surrounding area to confirm the near term projects listed in Table IV were the only projects that could potentially impact the study intersections analyzed in the Near Term plus Project Traffic Conditions. Therefore, it was agreed that the projects listed in Table IV were approved, near approval, or in the pipeline within the proximity of the Project site.

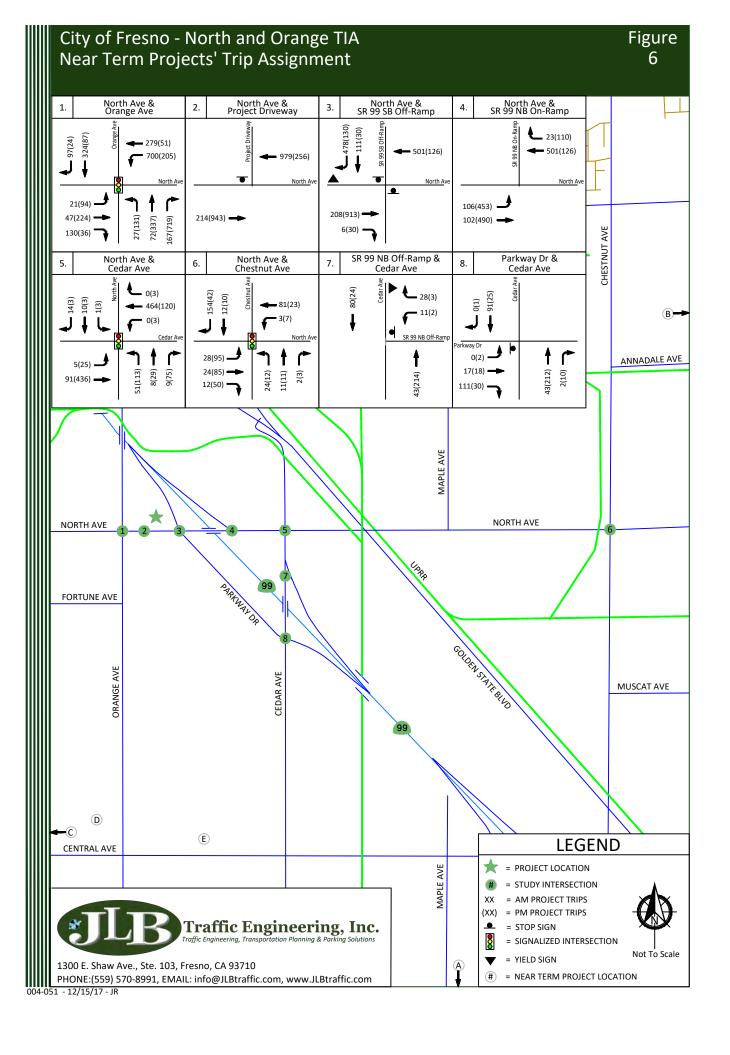

The trip generation listed in Table IV is that which is anticipated to be added to the streets and highways by these projects between the time of the preparation of this report and five (5) years after build-out of the Project. As shown in Table IV, the total trip generation for the Near Term Projects is 28,023 daily trips, 3,648 AM peak hour trips, and 3,780 PM peak hour trips. Figure 6 illustrates the location of the approved, near approval, or pipeline projects and their combined trip assignment to the study intersections under the Near Term plus Project Traffic Conditions scenario.

Table IV: Near Term Projects' Trip Generation

Approved Project Location	Approved or Pipeline Project Name	Daily Trips	AM Peak Hour	PM Peak Hour
Α	4780 S Maple Ave Rezone ¹	1,036	150	145
В	2778 S Willow Ave Rezone ¹	1,547	261	301
С	G3 Development (Ulta) ²	2,932	426	411
D	TPM 2012-06 (Amazon) ³	14,519	1,744	1,807
E	Orange Industrial ³	6,260	839	873
F	North Pointe ⁴ (Portion of)	1,729	228	243
	Total Approved and Pipeline Project Trips	28,023	3,648	3,780

Note:

- ¹ = Trip Generation based on JLB Traffic Engineering, Inc. Traffic Impact Analysis Report
- 2 = Trip Generation based on Yamabe & Horn Engineering, Inc. Traffic Impact Study Report
- ³ = Trip Generation based on Precision Civil Engineering Traffic Impact Study Report
- ⁴ = Trip Generation based on TJKM Transportation Consultants Traffic Impact Analysis Report

Results of Near Term plus Project Level of Service Analysis

The Near Term plus Project Traffic Conditions scenario assumes that the existing plus Project roadway geometrics and traffic controls will remain in place. Figure 7 illustrates the Near Term plus Project turning movement volumes, intersection geometrics and traffic controls. At present, developers of the Amazon Project have finalized street improvement plans to modify the intersection of North Avenue and Orange Avenue to include the following: 1) the modification of the eastbound trap right-turn lane into a through lane, 2) the striping of an eastbound right-turn lane, 3) the addition of a second westbound left-turn lane, and 4) the modification of the traffic signal to accommodate the modified lane geometrics. Based on information provided to JLB, these improvements will be built in 2018. However, to be conservative this TIA assumes that the baseline would remain in place under this study scenario. LOS worksheets from the Near Term plus Project Traffic Conditions scenario are provided n the Appendix G. Table V presents a summary of the Near Term plus Project peak hour LOS at the study intersections.

Under this scenario, the intersections of North Avenue and Orange Avenue, North Avenue and State Route 99 SB Off-Ramp, and North Avenue and Cedar Avenue are projected to exceed their respective LOS threshold during one or both peak periods. To improve the LOS at each of the intersections projected to exceed its LOS threshold, it is recommended that the following improvements be implemented.

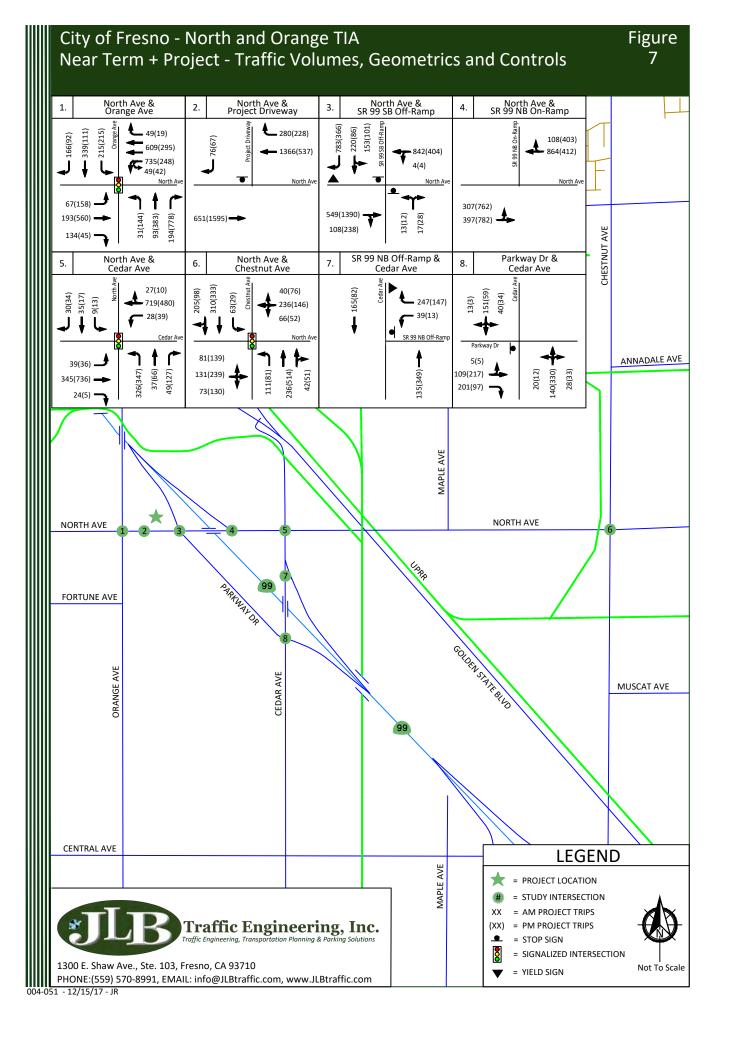
- North Avenue and Orange Avenue
 - Implement the improvements per the approved City of Fresno Street improvement plans as prepared for the Amazon Project.
- North Avenue and State Route 99 SB Off-Ramp
 - o Add a second eastbound through lane
 - o Add a westbound left-turn lane
 - Modify the westbound left-through lane to a through lane
 - o Add southbound dual left-turn lanes
 - Modify the southbound left-through lane to a through lane
 - Lengthen the southbound flared right-turn lane to create a standard length right-turn lane
 - o Signalize the intersection with protected left-turn phasing in all directions
- North Avenue and State Route 99 NB On-Ramp (improvements needed to improve queuing)
 - Add eastbound dual left-turn lanes
 - Modify the eastbound left-through lane to a through lane
 - Add a second eastbound through lane
 - Add a second westbound through lane
 - o Signalize the intersection with protected left-turn phasing in all directions
- North Avenue and Cedar Avenue
 - o Convert the eastbound right-turn lane to a through-right lane
 - o Add a second westbound through lane
 - Add a second northbound left-turn lane
 - Modify the traffic signal to accommodate the added lane geometrics

Between the Existing Traffic Conditions scenario and the Near Term plus Project Traffic Conditions scenario, the Project accounts for 22.1 percent of the daily trips, 15.0 percent of the AM peak hour trips, and 12.4 percent of the PM peak hour trips of growth in traffic, while the rest of the growth is attributable to the near term projects. Therefore, one can deduce that the mitigation measures presented under this scenario may not be necessary immediately upon completion of the proposed Project. However, if all of the near term projects are developed close to the completion date of the proposed Project, the detailed recommended improvements presented above may be necessary in order to improve the LOS to an acceptable threshold.

Table V: Near Term plus Project Intersection LOS Results

			AM Peak H	our	PM Peak H	lour
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	North Avenue / Orange Avenue	Signalized	>120.0	F	>120.0	F
1	North Avenue / Orange Avenue	Signalized (Mitigated)	42.4	D	59.01	Е
2	North Avenue / Project Driveway	Two-Way STOP	22.9	С	12.0	В
3	North Avenue / State Boute 00 CD Off Bown	Two-Way STOP	>120.0	F	>120.0	F
3	North Avenue / State Route 99 SB Off-Ramp	Signalized (Mitigated)	38.2	D	30.7	С
4	North Avenue / State Boute CO NB On Borne	Unsignalized	18.3	С	20.8	С
4	North Avenue / State Route 99 NB On-Ramp	Signalized (Mitigated)	6.2	Α	9.1	Α
_	North Assess / Coder Assess	Signalized	>120.0	F	79.2	Е
5	North Avenue / Cedar Avenue	Signalized (Mitigated)	25.6	С	41.7	D
6	North Avenue / Chestnut Avenue	Signalized	19.9	В	19.5	В
7	State Route 99 NB Off-Ramp / Cedar Avenue	Two-Way STOP	11.6	В	12.7	В
8	Parkway Drive / Cedar Avenue	Two-Way STOP	13.0	В	17.0	С

Notes: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls


LOS for Two-Way and One-Way STOP controlled intersections are based on the worst approach/movement of the minor street.

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized study intersections in the Near Term plus Project Traffic Conditions scenario. These warrants are found in Appendix K. The effects of right-turning traffic from the minor approach onto the major approach were considered using engineering judgment pursuant to CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersections of North Avenue and State Route 99 SB Off-Ramp and North Avenue and State Route 99 NB On-Ramp satisfy peak hour signal warrants during the AM and PM peaks. Based on the signal warrants and engineering judgment, signalization of these intersections is recommended.

www.JLBtraffic.com

info@JLBtraffic.com

Cumulative Year 2035 No Project Traffic Conditions

The Cumulative Year 2035 No Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place with a few exceptions. By the year 2035, the baseline geometrics assume that the interchange of State Route 99 with North Avenue will be reconstructed and that the interchange of State Route 99 with Cedar Avenue will be removed. Furthermore, on December 6, 2016, Caltrans completed the preparation of a Project Study Report-Project Development Support (PSR-PDS) to request programming for funding for the Project Approval and Environmental Document Phase. The PSR-PDS contained four (4) interchange project alternatives. All four alternatives would remove the connection of Parkway Drive to North Avenue by redirecting it west towards Orange Avenue.

At the time of preparation of this TIA, a preferred project alternative had not been selected. For purposes of this study, it was assumed that Alternative 3: Spread Diamond would be implemented. Measure C has the reconstruction of the interchange of State Route 99 with North Avenue and Cedar Avenue as an Urban Tier 1, Project M. A total of \$47.14 million has been programmed in Measure C, while the Fresno COG Regional Transportation Program (RTP) has programmed \$12.50 million towards the North Avenue and Cedar Avenue interchange reconstruction. Therefore, a total of \$59.64 million are being allocated for this project. Appendix H includes excerpts from the Measure C and Fresno COG RTP programs as well as the Alternative 3: Spread Diamond Interchange concept.

Results of Cumulative Year 2035 No Project Level of Service Analysis

Figure 8 illustrates the Cumulative Year 2035 No Project total turning movement volumes, assumed intersection geometrics and traffic controls. LOS worksheets for the Cumulative Year 2035 No Project Traffic Conditions scenario are provided in Appendix I. Table VI presents a summary of the Cumulative Year 2035 No Project peak hour LOS at the study intersections.

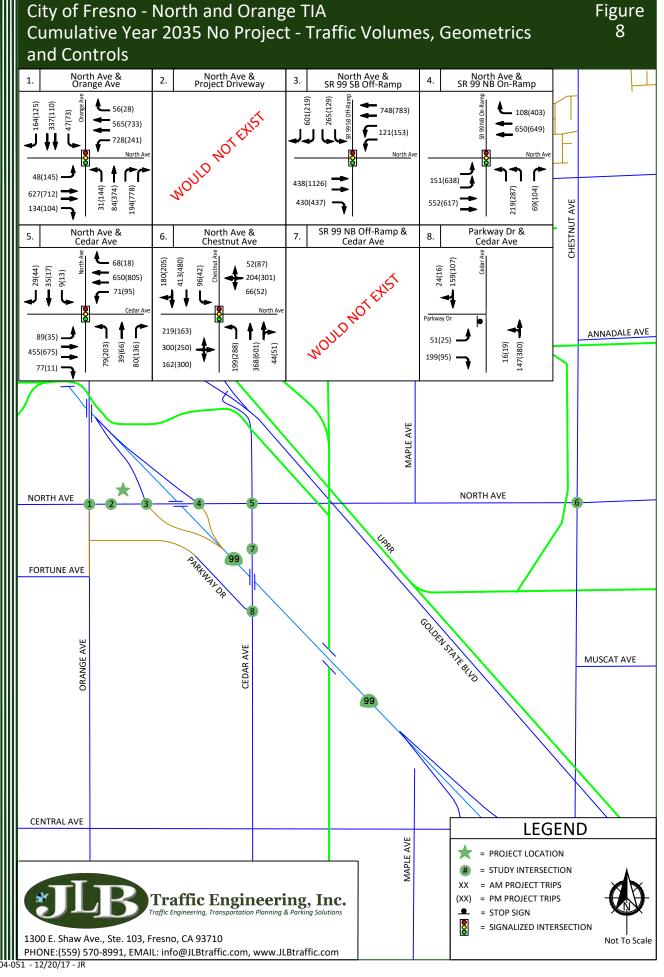
Under this scenario, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the following improvements be implemented.

- North Avenue and Chestnut Avenue
 - Add an eastbound left-turn lane
 - Change the eastbound left-through-right lane to a through lane
 - Add an eastbound right-turn lane
 - Add a westbound left-turn lane
 - Change the westbound left-through-right lane to a through lane
 - o Add a westbound right-turn lane
 - Modify the traffic signal to accommodate the added lane geometrics

Table VI: Cumulative Year 2035 No Project Intersection LOS Results

			AM Peak H	our	PM Peak Hour		
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS	
1	North Avenue / Orange Avenue	Signalized	37.3	D	55.8	Е	
2	North Avenue / Project Driveway	Would Not Exist	N/A	N/A	N/A	N/A	
3	North Avenue / State Route 99 SB Off-Ramp	Signalized	23.9	С	13.4	В	
4	North Avenue / State Route 99 NB On-Ramp	Signalized	15.2	В	22.9	С	
5	North Avenue / Cedar Avenue	Signalized	18.5	В	42.2	D	
6	North Avenue / Chestnut Avenue	Signalized	80.9	F	96.2	F	
О	North Avenue / Chesthut Avenue	Signalized (Mitigated)	40.2	D	47.5	D	
7	State Route 99 NB Off-Ramp/ Cedar Avenue	Would Not Exist	N/A	N/A	N/A	N/A	
8	Parkway Drive / Cedar Avenue	Two-Way STOP	11.8	В	10.4	В	

Notes: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls


LOS for Two-Way and One-Way STOP controlled intersections are based on the worst approach/movement of the minor street.

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized study intersections in the Cumulative Year 2035 No Project Traffic Conditions scenario. These warrants are found in Appendix K. The effects of right-turning traffic from the minor approach onto the major approach were considered using engineering judgment pursuant to CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, none of the unsignalized intersections satisfy peak hour signal warrants.

www.JLBtraffic.com

info@JLBtraffic.com

Cumulative Year 2035 plus Project Traffic Conditions

The Cumulative Year 2035 plus Project Traffic Conditions scenario assumes the same roadway geometrics and traffic controls as presented in the Cumulative Year 2035 No Project Traffic Conditions scenario. With these changes in the roadway network, it is projected that travel patterns may differ from what is anticipated for the immediate Project build-out. Figure 9 illustrates the 2035 Project Only Trips to the study intersections.

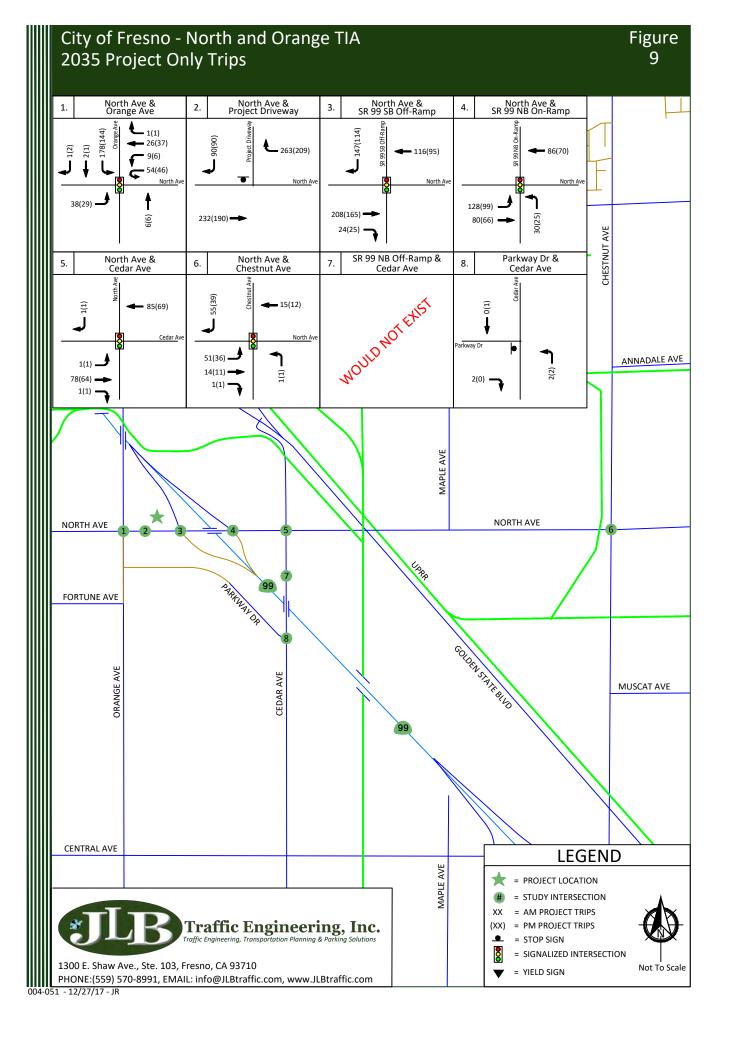
Results of Cumulative Year 2035 plus Project Level of Service Analysis

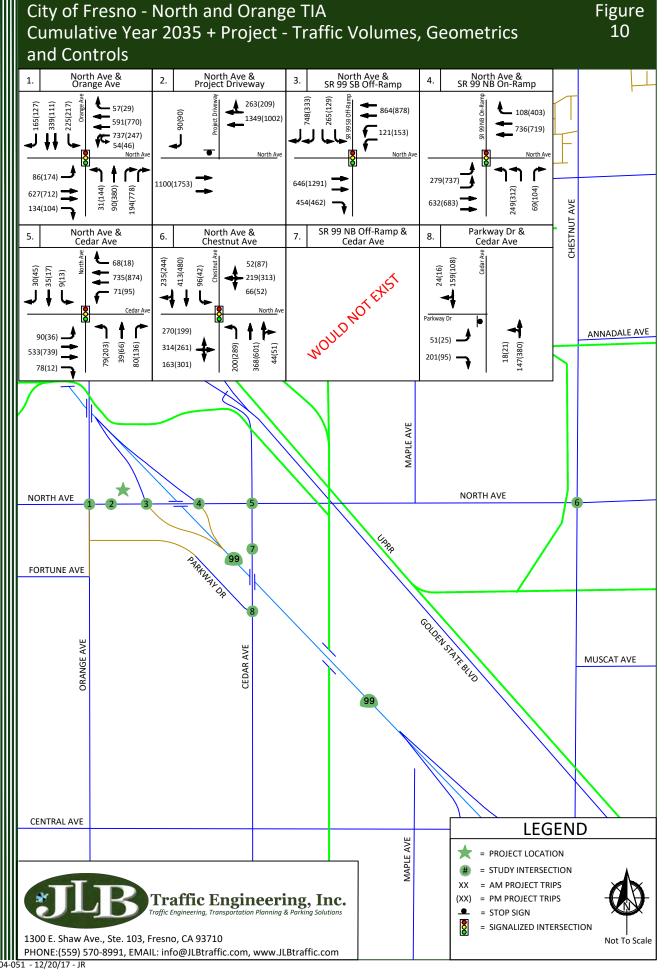
Figure 10 illustrates the Cumulative Year 2035 plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Cumulative Year 2035 plus Project Traffic Conditions scenario are provided in Appendix J. Table VII presents a summary of the Cumulative Year 2035 plus Project peak hour LOS at the study intersections.

Under this scenario, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the same improvements presented in the Cumulative Year 2035 No Project Traffic Conditions scenario be implemented.

Table VII: Cumulative Year 2035 plus Project Intersection LOS Results

			AM Peak H	our	PM Peak Hour		
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS	
1	North Avenue / Orange Avenue	Signalized	62.2	E	62.4	E	
2	North Avenue / Project Driveway	Two-Way STOP	23.6	С	16.7	С	
3	North Avenue / State Route 99 SB Off-Ramp	Signalized	38.2	D	28.5	С	
4	North Avenue / State Route 99 NB On-Ramp	Signalized	15.2	В	19.6	В	
5	North Avenue / Cedar Avenue	Signalized	18.9	В	35.0	С	
_	North Avenue / Chestruit Avenue	Signalized	103.3	F	116.5	F	
6	North Avenue / Chestnut Avenue	Signalized (Mitigated)	47.0	D	53.5	D	
7	State Route 99 NB Off-Ramp / Cedar Avenue	Would Not Exist	N/A	N/A	N/A	N/A	
8	Parkway Drive / Cedar Avenue	Two-Way STOP	11.8	В	10.4	В	


LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls


LOS for Two-Way and One-Way STOP controlled intersections are based on the worst approach/movement of the minor street.

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized study intersections in the Cumulative Year 2035 plus Project Traffic Conditions scenario. These warrants are found in Appendix K. The effects of right-turning traffic from the minor approach onto the major approach were considered using engineering judgment pursuant to CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, none of the unsignalized intersections satisfy peak hour signal warrants.

info@JLBtraffic.com

Queuing Analysis

Table VIII provides a queue length summary for left- and right-turn lanes at all study scenarios. The queuing analyses for the study intersections are contained in the LOS worksheets for the respective scenarios. Appendix A contains the methodologies used to evaluate these intersections.

Queuing analyses were completed using Sim Traffic output information. Synchro provides both 50th and 95th percentile maximum queue lengths in feet. Per the Synchro manual, "the 50th percentile maximum queue is the maximum back of queue on a typical cycle and the 95th percentile queue is the maximum back of queue with 95th percentile volumes." The queues shown on Table VIII are the 95th percentile queue lengths for the respective lane movements.

The Highway Design Manual (HDM) provides guidance for determining deceleration lengths for the leftand right-turn lanes based on design speeds. Per the HDM criteria, "tapers for right-turn lanes are usually unnecessary since the main line traffic need not be shifted laterally to provide space for the right-turn lane. If, in some rare instances, a lateral shift were needed, the approach taper would use the same formula as for a left-turn lane." Therefore, a bay taper length pursuant to the Caltrans HDM would need to be added, as necessary, to the recommended storage lengths presented below.

Table VIII: Queuing Analysis

ID	Intersection	Existing Que		Exis	ting	Exis plus P	•	Near ⁻ plus Pi	_		roject		ive 2035 roject
		Storage Length	(10.)	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
		EB Left	250	49	79	84	123	124	304	79	269	186	273
		EB Right	*	9	12	6	11	130	58	104	148	109	82
		WB Left	185	77	57	121	122	*	*	*	*	*	*
		WB Dual Lefts	*	*	*	*	*	262	186	377	152	345	224
1	Orange Avenue	WB Right	100	48	24	45	20	110	24	35	82	94	84
1	/ North Avenue	NB Left	150	25	26	13	25	64	252	69	231	43	288
	North Avenue	NB Right	150	34	59	37	46	*	*	*	*	*	*
		NB Dual Rights	*	*	*	*	*	78	300	84	331	99	320
		SB Left	100	32	74	198	175	212	185	84	125	209	203
		SB Right	130	41	39	105	131	207	293	105	76	151	98
2	North Avenue / Driveway	SB Right	*	*	*	58	59	142	52	*	*	264	81
		EB Right	*	60	89	183	377	81	119	232	168	225	144
		WB Left	*	*	*	*	*	3	2	*	*	*	*
		WB Dual Lefts	*	*	*	*	*	*	*	83	95	70	97
_	North Avenue	NB Left	*	13	9	54	24	50	63	*	*	*	*
3	/	NB Right	*	34	47	38	63	53	71	*	*	*	*
	SR 99 SB Off-Ramp	SB Left	*	*	*	229	166	156	149	*	*	*	*
		SB Dual Lefts	*	*	*	*	*	*	*	115	77	138	94
		SB Right	*	*	*	134	88	*	*	*	*	*	*
		SB Dual Rights	*	*	*	*	*	390	95	238	88	387	172
	No allo Account	EB Dual Lefts	*	*	*	*	*	148	300	123	167	164	206
4	North Avenue	WB Right	85	*	60	36	50	40	247	88	157	64	185
	/ SR 99 NB On-Ramp	NB Dual Lefts	*	*	*	*	*	*	*	133	158	136	146
	Sit 33 NB Off Ramp	NB Right	*	*	*	*	*	*	*	84	86	78	84

Table VIII: Queuing Analysis (cont.)

ID	Intersection	Existing Que		Exis	ting	Exist plus P	-	Near Plus P	_	Cumulat No Pr	ive 2035 oject	Cumulat plus P	ive 2035 roject
		Storage Length	(16.)	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
		EB Left	150	78	46	67	50	89	68	133	101	127	68
		EB Right	100	46	7	32	7	*	*	54	26	72	19
		WB Left	150	69	58	70	105	91	85	102	162	120	161
	Cedar Avenue	WB Right	*	*	*	*	*	*	*	51	33	53	17
5	/	NB Left	180	167	169	242	254	*	*	120	258	126	337
	North Avenue	NB Dual Lefts	*	*	*	*	*	182	250	*	*	*	*
		NB Right	180	36	50	41	53	71	90	43	124	69	118
		SB Left	155	31	32	32	62	31	71	30	56	29	41
		SB Right	355	49	63	41	93	68	53	46	53	37	80
		EB Left	*	*	*	*	*	*	*	247	370	242	343
		EB Right	*	*	*	*	*	*	*	76	193	94	244
6	Chestnut Avenue	WB Left	*	*	*	*	*	*	*	122	116	83	107
В	/ North Avenue	WB Right	*	*	*	*	*	*	*	71	85	66	197
	North Avenue	NB Left	245	101	76	97	106	126	124	276	365	365	322
		SB Left	150	89	56	86	76	82	51	125	57	151	95
7	Cedar Avenue	WB Left	>300	40	27	38	45	56	26	*	*	*	*
	/ SR 99 NB Off-Ramp	WB Right	*	*	*	*	31	149	53	*	*	*	*
	Cedar Avenue	EB Left	*	*	*	*	*	*	*	92	20	56	23
8	/ Parkway Drive	EB Right	100	60	22	42	12	141	41	123	37	80	23

* = Does not exist or is not projected to exist

Based on the Synchro output files and traffic engineering judgement, it is recommended that the storage capacity for the following be considered for the Cumulative Year 2035 plus Project Traffic Conditions.

Orange Avenue and North Avenue

- Consider increasing the storage capacity of the eastbound left-turn lane to 275 feet.
- Consider setting the storage capacity of the eastbound right-turn lane to 150 feet.
- Consider setting the storage capacity of the westbound dual left-turn lanes to 375 feet.
- Consider increasing the storage capacity of the westbound right-turn lane to 125 feet.
- Consider increasing the storage capacity of the northbound left-turn lane to 300 feet. 0
- Consider increasing the storage capacity of the northbound dual right-turn lanes to 325 feet.
- Consider increasing the storage capacity of the southbound left-turn lane to 200 feet.
- Consider increasing the storage capacity of the southbound right-turn lane to 150 feet.

North Avenue and State Route 99 SB Off-Ramp

- Consider setting the storage capacity of the eastbound right-turn lane to 225 feet.
- Consider setting the storage capacity of the westbound dual left-turn lanes to 100 feet.
- Consider setting the storage capacity of the southbound dual left-turn lanes to 150 feet.
- Consider setting the storage capacity of the southbound dual right-turn lanes to 400 feet.

raffic Engineering, Transportation Planning, & Parking Solutions

www.JLBtraffic.com

info@JLBtraffic.com

- North Avenue and State Route 99 NB On-Ramp
 - Consider setting the storage capacity of the eastbound dual left-turn lanes to 225 feet.
 - Consider increasing the storage capacity of the westbound right-turn lane to 200 feet.
 - o Consider setting the storage capacity of the northbound dual left-turn lanes to 175 feet.
 - o Consider setting the storage capacity of the northbound right-turn lane to 100 feet.
- Cedar Avenue and North Avenue
 - o Consider increasing the storage capacity of the westbound left-turn lane to 175 feet.
 - o Consider setting the storage capacity of the westbound right-turn lane to 75 feet.
 - o Consider increasing the storage capacity of the northbound left-turn lane to 350 feet.
- Chestnut Avenue and North Avenue
 - Consider setting the storage capacity of the eastbound left-turn lane to 375 feet.
 - o Consider setting the storage capacity of the eastbound right-turn lane to 250 feet.
 - Consider setting the storage capacity of the westbound left-turn lane to 125 feet.
 - Consider setting the storage capacity of the westbound right-turn lane to 200 feet.
 - o Consider increasing the storage capacity of the northbound left-turn lane to 375 feet
- Cedar Avenue and Parkway Drive
 - Consider setting the storage capacity of the eastbound left-turn lane to 100 feet.
 - Consider setting the storage capacity of the eastbound right-turn lane to 125 feet.

At the remaining approaches to the study intersections, the existing or planned storage capacity will be sufficient to accommodate the maximum queue.

raffic Engineering, Transportation Planning, & Parking Solutions

info@JLBtraffic.com

Project's Pro-Rata Fair Share of Future Transportation Improvements

The Project's fair share percentage impacts to the future improvements which are not fully funded by existing impact fee programs are provided in Table IX. Caltrans guidelines for the Preparation of Traffic Impact Studies. The Project's pro-rata fair shares were calculated utilizing the Existing volumes, 2035 Project Only Trips, and the Cumulative Year 2035 plus Project volumes. Figure 2 illustrates the Existing volumes, Figure 9 illustrates the 2035 Project Only Trips, and Figure 10 illustrates the Cumulative Year 2035 plus Project traffic volumes. Since the critical peak period for the study facilities was determined to be during the AM peak, the AM peak volumes are utilized to determine the Project's pro-rata fair share.

It is recommended that the Project contribute its equitable fair share as listed in Table IX for the future improvements necessary to maintain an acceptable LOS or turn lane storage capacity. However, fair share contributions should only be made for those facilities or portion thereof currently not funded by the responsible agency roadway impact fee program(s), as appropriate. For those improvements not presently covered by local and regional roadway impact fee programs, it is recommended that the Project contribute its equitable fair share. Payment of the Project's equitable fair share in addition to the local and regional impact fee programs would satisfy the Project's traffic mitigation measures.

This study does not provide construction costs for the recommended mitigation measures; therefore, if the recommended mitigation measures are implemented, it is recommended that the developer work with the City of Fresno to develop the estimated construction cost.

Table IX: Project's Fair of Share of Future Roadway Improvements

ID	Intersection	Existing Traffic Volumes (AM Peak)	Cumulative Year 2035 + Project Traffic Volumes (AM Peak)	2035 Project Only Trips (AM Peak)	Project's Fair Share (%)
3	North Avenue / SR 99 SB Off-Ramp	861	3,098	495	22.13%
4	North Avenue / SR 99 NB Off-Ramp	629	2,073	324	22.44%
5	North Avenue / Cedar Avenue	856	1,847	166	16.75%
6	North Avenue / Chestnut Avenue	1,131	2,440	137	10.47%

Note: Project Fair Share = ((2035 Project Only Trips) / (Cumulative Year 2035 + Project Traffic Volumes - Existing Traffic Volumes)) x 100

Conclusions and Recommendations

Conclusions and recommendations regarding the proposed Project are provided below.

Existing Traffic Conditions

• At present, all study intersections operate at an acceptable LOS during the AM and PM peak periods.

Existing plus Project Traffic Conditions

- A review of the existing Project site property lines and the Project driveways to be constructed
 indicate that the proposed access driveways are located at points that minimize traffic operational
 impacts to the existing roadway network.
- It is recommended that the Project implement Class II bike lanes along its frontage to North Avenue.
- At build-out, the Project is estimated to generate a maximum of 7,965 daily trips, 644 AM peak hour trips and 536 PM peak hour trips.
- Under this scenario, the intersection of North Avenue and State Route 99 SB Off-Ramp is projected to
 exceed its LOS threshold during the AM peak period. To improve the LOS at this intersection, it is
 recommended that the following improvements be implemented.
 - Add a southbound left-turn lane
 - o Modify the southbound left-through lane to a through lane
 - o Lengthen the short southbound flared right-turn lane to create a standard length right-turn lane
 - Signalize the intersection with protected left-turn phasing in the northbound and southbound directions and split phasing in the eastbound and westbound directions

Near Term plus Project Traffic Conditions

- The total trip generation for the Near Term Projects is 28,023 daily trips, 3,648 AM peak hour trips, and 3,780 PM peak hour trips.
- The Project accounts for 22.1 percent of the daily trips, 15.0 percent of the AM peak hour trips, and 12.4 percent of the PM peak hour trips of growth in traffic, while the rest of the growth is attributable to the near term projects. Therefore, one can deduce that the mitigation measures presented under this scenario may not be necessary immediately upon completion of the proposed Project.
- Under this scenario, the intersections of North Avenue and Orange Avenue, North Avenue and State
 Route 99 SB Off-Ramp, and North Avenue and Cedar Avenue are projected to exceed their respective
 LOS threshold during one or both peak periods. To improve the LOS at each of the intersections
 projected to exceed its LOS threshold, it is recommended that the following improvements be
 implemented.
 - North Avenue and Orange Avenue
 - Implement the improvements per the approved City of Fresno Street improvement plans as prepared for the Amazon Project.
 - North Avenue and State Route 99 SB Off-Ramp
 - Add a second eastbound through lane
 - Add a westbound left-turn lane
 - Modify the westbound left-through lane to a through lane
 - Add southbound dual left-turn lanes

1300 E. Shaw Ave., Ste. 103

- Modify the southbound left-through lane to a through lane
- Lengthen the southbound flared right-turn lane to create a standard length right-turn lane
- Signalize the intersection with protected left-turn phasing in all directions
- North Avenue and State Route 99 NB On-Ramp (improvements needed to improve queuing)
 - Add eastbound dual left-turn lanes
 - Modify the eastbound left-through lane to a through lane
 - Add a second eastbound through lane
 - Add a second westbound through lane
 - Signalize the intersection with protected left-turn phasing in all directions
- North Avenue and Cedar Avenue
 - Convert the eastbound right-turn lane to a through-right lane
 - Add a second westbound through lane
 - Add a second northbound left-turn lane
 - Modify the traffic signal to accommodate the added lane geometrics

Cumulative Year 2035 No Project Traffic Conditions

- Under this scenario, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the following improvements be implemented.
 - North Avenue at Chestnut Avenue
 - Add an eastbound left-turn lane
 - Change the eastbound left-through-right lane to a through lane
 - Add an eastbound right-turn lane
 - Add a westbound left-turn lane
 - Change the westbound left-through-right lane to a through lane
 - Add a westbound right-turn lane
 - Modify the traffic signal to accommodate the added lane geometrics

Cumulative Year 2035 plus Project Traffic Conditions

 Under this scenario, the intersection of North Avenue and Chestnut Avenue is projected to operate at an unacceptable LOS during the AM and PM peak periods. To improve the LOS at this intersection, it is recommended that the same improvements presented in the Cumulative Year 2035 No Project Traffic Conditions scenario be implemented.

Queuing Analysis

• It is recommended that the City consider left- and right-turn lane storage lengths as indicated in the Queuing Analysis.

Project Equitable Fair Share Impact Analysis

It is recommended that the Project contribute its equitable fair share as presented in Table IX.

Study Participants

JLB Traffic Engineering, Inc. Personnel:

Jose Luis Benavides, P.E., T.E. Project Manager

Susana Maciel, E.I.T. Engineering I/II

Alan Miao, E.I.T. Engineer I/II

Jove Alcazar Engineer I/II

Javier Rios Engineer I/II

Veronica Benavides Clerical

Persons Consulted:

Jill Gormley, P.E. City of Fresno

Harpreet Kooner County of Fresno

Tong Xiong County of Fresno

David Padilla Caltrans

Kai Han, T.E. Fresno COG

Neil Angelillo True North properties

References

- 1. Trip Generation, 10th Edition, Washington D.C., Institute of Transportation Engineers, 2017
- 2. City of Fresno, 2035 General Plan
- 3. County of Fresno, 2000 General Plan
- 4. 2014 California Manual on Uniform Traffic Control Devices, Caltrans, November 7, 2014
- 5. Guide for the Preparation of Traffic Impact Studies, Caltrans, dated December 2002.
- 6. Final 2006 Measure "C" Extension Expenditure Plan
- 7. Fresno COG 2014 Regional Transportation Plan

Appendix A: Scope of Work

Page | A

October 31, 2017

Mrs. Jill Gormley, PE Traffic Engineer City of Fresno 2600 Fresno Street Fresno, CA 93721-3616

Via Email Only: Jill.Gormley@fresno.gov

Subject: Proposed Draft Scope of Work for the Preparation of a Traffic Impact Analysis for the Proposed Commercial Development at the Northeast Corner of North Avenue

and Orange Avenue in the City of Fresno (JLB Project 004-051)

Dear Mrs. Gormley,

JLB Traffic Engineering, Inc. (JLB) hereby submits this Draft Scope of Work for the preparation of a Traffic Impact Analysis (TIA) for the proposed commercial development (Project) described below. The Project proposes to build a gasoline station with convenience market, and two fast food restaurants with drive-through windows on 3.92 acres at the northeast corner of North Avenue and Orange Avenue in the City of Fresno. Per information provided to JLB, the Project is consistent with the City of Fresno General Plan. An aerial of the Project vicinity and the Project site plan can be found in Exhibit A and Exhibit B respectively.

The purpose of this TIA is to evaluate the potential on- and off-site traffic impacts, identify short-term roadway and circulation needs, determine potential mitigation measures, and identify any critical traffic issues that should be addressed in the on-going planning process. In order to evaluate the on and off-site traffic impacts of the proposed project, JLB proposes the following draft scope of work.

Scope of Work

- Request a Fresno Council of Governments (Fresno COG) traffic forecast model run for the Project (Select Zone Analysis), which will include the Project and the streets to be analyzed. The Fresno COG traffic forecasting model will be used to forecast traffic volumes for the Base Year 2017 and Cumulative Year 2035 plus Project scenarios.
- JLB will evaluate existing and forecast levels of service (LOS) at the study intersection(s). JLB will use HCM 2010 methodologies within Synchro to perform this analysis for the AM and PM peak hours. JLB will identify the causes of poor LOS.
- Evaluate on-site circulation and provide recommendations as necessary to improve circulation to the site and within the Project site.
- As necessary, obtain recent (less than two years) or schedule and conduct new traffic counts at the study facility(ies).

Page | 1

Mrs. Gormley North Avenue and Orange Avenue Commercial TIA Draft Scope of Work October 31, 2017

- Perform a site visit to observe existing traffic conditions, especially during the AM and PM peak hours. Existing roadway conditions, including geometrics and traffic controls, will be verified.
- Forecast trip distribution based on turn count information, input from Fresno COG staff and knowledge of the existing and planned circulation network in the vicinity of the Project.
- Prepare California Manual on Uniform Traffic Control Devices (CA MUTCD) peak hour signal warrants for un-signalized study intersections.
- JLB will qualitatively analyze existing and planned transit routes in the Project's vicinity.
- JLB will qualitatively analyze existing and planned bikeways in the Project's vicinity.

Study Scenarios:

- 1. Existing traffic conditions with needed improvements (if any);
- 2. Existing plus Project traffic conditions with proposed improvement measures (if any);
- 3. Near Term plus Project traffic conditions with proposed mitigation measures (if any); and
- 4. Cumulative Year 2035 plus Project traffic conditions with proposed mitigation measures (if any).

Weekday peak hours to be analyzed:

- 1. 7 9 AM peak hour
- 2. 4 6 PM peak hour

Study Intersections:

- 1. North Avenue / Orange Avenue
- 2. North Avenue / Project Driveway (limited right in, and right out access)
- 3. North Avenue / SR 99 SB Off-Ramp
- 4. North Avenue / SR 99 NB On-Ramp
- 5. Cedar Avenue / SR 99 NB Off-Ramp
- 6. Cedar Avenue / SR 99 SB On-Ramp

Queuing analysis is included in the proposed scope of work for the study intersection(s) listed above under all study scenarios. This analysis will be utilized to recommend minimum storage lengths for leftturn and right-turn lanes at all study intersections.

Study Segments:

1. None

Project Only Trip Assignment to the Following State Facilities:

1. None

Trip Generation

Table I presents the trip generation for the proposed Project pursuant to the 9th Edition of the Trip Generation Manual with trip generation rates for a Gasoline/Service Station with Convenience Market, and the Fast-Food Restaurants with Drive-Through Windows. At build-out, the Project is estimated to generate a maximum of 5,907 daily trips, 456 AM peak hour trips and 439 PM peak hour trips.

1300 E. Shaw Ave., Ste. 103

Mrs. Gormley North Avenue and Orange Avenue Commercial TIA Draft Scope of Work October 31, 2017

Table I: Project Only Trip Generation

			E	aily		Α	М Ре	ak H	our		PM Peak Hour					
Land Use (ITE Code)	Size	Unit	Rate	Total	Trip	In	Out	In	Out	Total	Trip	In	Out	In	Out	Total
			Kute	Total	Rate	9	%	""	Out	TOLUI	Rate	:	%	III	Out	Total
Gasoline/Service Station with Convenience Market (945)	18	f.p.	162.78	2,930	10.16	50	50	92	92	183	13.51	50	50	122	122	243
Fast-Food Restaurant with Drive-Through Window (934)	6.000	k.s.f.	496.12	2,977	45.42	51	49	139	134	273	32.65	52	48	102	94	196
Total Project Trips				5,907				231	226	456				224	216	439

Note: f.p. = Fueling Positions k.s.f. = Thousand Square Feet

Access to the Project

Access to and from the Project site is from three points. One of the proposed access points is located along the north side of North Avenue at a point approximately 360 feet east of Orange Avenue and is proposed to be limited to right-in, and right-out access. The second and third proposed access points are located on the south side of a private street approximately 180 feet north of North Avenue. These two driveways are to be located approximately 120 and 270 feet east of Orange Avenue. The site plan, which can be found in Exhibit B, illustrates the proposed access points.

Near Term Projects to be Included

Based on our local knowledge of the study area, JLB proposes to include projects in the vicinity of the proposed Project under the Near Term plus Project Analysis. The projects proposed to be included in the Near Term Scenario are:

_			
Pro	iect	Na	me

1. 4780 South Maple Avenue Rezone

2. 2778 South Willow Avenue 3. G3 Development

4. Amazon

5. Orange Avenue Industrial Park

General Location

NE corner of Maple/American NW corner of Annandale/Willow

NW corner of Central/East NW corner of Central/Orange

North side of Central between Orange/Cedar

Other Near Term Projects the City of Fresno, County of Fresno or Caltrans has knowledge of and for which it is anticipated that said project(s) is/are projected to be whole or partially built by the Near Term Project Year 2022, the City of Fresno, County of Fresno or Caltrans, as appropriate, would need to provide JLB with near term project details. Near term project details include project description, location, proposed land uses with breakdowns and type of residential units and amount of square footages for non-residential uses.

Mrs. Gormley North Avenue and Orange Avenue Commercial TIA Draft Scope of Work October 31, 2017

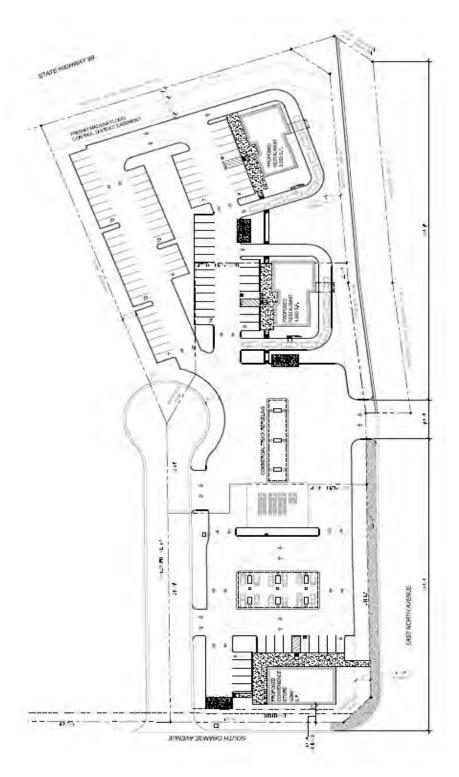
The above scope of work is based on our understanding of this Project and our experience with similar Traffic Impact Analysis Projects. In the absence of comments by November 21, 2017, it will be assumed that the above scope of work is acceptable to the agency(ies) that have not submitted any comments to the proposed TIA Draft Scope of Work.

If you have any questions or require additional information, please contact me by phone at (559) 570-8991 or by e-mail at jbenavides@jlbtraffic.com.

Sincerely,

Jose Luis Benavides, P.E., T.E. President

one L Banak


cc: Tong Xiong, County of Fresno Harpreet Kooner, County of Fresno David Padilla, Caltrans

Z:\01 Projects\004 Fresno\004-051 North & Orange TIA\Draft Scope of Work\L10312017 Draft Scope of Work.docx

Exhibit A – Aerial

Exhibit B - Site Plan

Jose Benavides

From: Xiong, Tong (PWP) <tonxiong@co.fresno.ca.us>

Sent: Tuesday, November 21, 2017 2:42 PM

To: Jose Benavides

Cc: Kooner, Harpreet; Daniele, Frank
Subject: RE: North and Orange Avenue TIA

Good afternoon Jose,

Thanks for giving us the opportunity to review the scoping document for the gas station project located at the northeast corner of Orange Avenue and North Avenue. Fresno County Transportation Planning is in agreement with the content of the scope of work and requests the intersection of North Avenue and Chestnut Avenue and the study scenario Cumulative Year 2035 No Project be included in the study. Please be advised that Fresno County Transportation planning may request additional intersections to be studied once we have received a trip distribution figure for review.

Regards,

Tong Xiong

Design Division
Department of Public Works and Planning
2220 Tulare Street, 7th Floor
Fresno, CA 93721
Tel: (559) 600-4532
E-mail: tonxiong@co.fresno.ca.us

Please consider the environment before printing this e-mail

From: Jose Benavides [mailto:jbenavides@jlbtraffic.com]

Sent: Tuesday, October 31, 2017 5:27 PM

To: Jill Gormley (Jill.Gormley@fresno.gov) < Jill.Gormley@fresno.gov>

Cc: Xiong, Tong (PWP) <tonxiong@co.fresno.ca.us>; Kooner, Harpreet <HKooner@co.fresno.ca.us>; David Padilla (dave_padilla@dot.ca.gov) <dave_padilla@dot.ca.gov>; Javier Rios <jrios@jlbtraffic.com>; Susana Maciel

<smaciel@jlbtraffic.com>

Subject: North and Orange Avenue TIA

County of Fresno

Internal Services Department (ISD) - IT Services

Service Desk 600-5900 (Help Desk)

CAUTION!!!

This email has been flagged as containing one or more attachments from an outside source.

Please check the senders email address carefully.

If you were not expecting to receive an email with attachments, please DO NOT open the file.

Forward the email to SPAM "SPAM@co.fresno.ca.us" and delete it.

Good afternoon,

Attached you will find a proposed scope of work for a project in the City of Fresno for your review and comment. If your agency has no comments let us know as well.

Sincerely,

Jose Luis Benavides, P.E., T.E. President

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

1300 E. Shaw Ave., Ste. 103

Fresno, CA 93710

Office: (559) 570-8991 Cell: (559) 694-6000 www.JLBtraffic.com

Jose Benavides

From: Padilla, Dave@DOT <dave.padilla@dot.ca.gov>
Sent: Tuesday, November 28, 2017 8:08 AM

To: Jose Benavides; Jill Gormley (Jill.Gormley@fresno.gov)
Cc: Javier Rios; Susana Maciel; Navarro, Michael@DOT
Subject: RE: North and Orange Avenue TIA-Correction

Good Morning Jose,

The proposed scope of work for the traffic study appears to be satisfactory. Caltrans HDM Topic 504.8 indicates that driveways with right-in and right-out access can be permitted beyond 200 feet from a ramp intersection; however, further analysis will be needed in order to determine whether this is viable for existing conditions. In the future conditions the proposed driveway location may not meet access spacing. For the purpose of your analysis, I will forward you the PSR for this location in a separate email. It is also my understanding that access control may be purchased.

Thank you

David Padilla, Associate Transportation Planner Office of Planning & Local Assistance 1352 W. Olive Avenue Fresno, CA 93778-2616

Office: (559) 444-2493, Fax: (559) 445-5875

From: Jose Benavides [mailto:jbenavides@jlbtraffic.com]

Sent: Monday, November 27, 2017 11:26 AM

To: Jill Gormley (Jill.Gormley@fresno.gov) < Jill.Gormley@fresno.gov>

Cc: Padilla, Dave@DOT <dave.padilla@dot.ca.gov>; Javier Rios <jrios@jlbtraffic.com>; Susana Maciel <smaciel@jlbtraffic.com>

Subject: RE: North and Orange Avenue TIA

Good afternoon Jill and David,

I am following up with the two of you to inquire if you had any comments to the draft scope of work that we submitted on October 31. We would like to move forward with the analysis for submittal in the next few weeks. We already have comments from the County and they have requested that we add the intersection of North and Orange and that a 2035 No Project Scenario be added.

Sincerely,

Jose Luis Benavides, P.E., T.E. President

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

1300 E. Shaw Ave., Ste. 103

Fresno, CA 93710 Office: (559) 570-8991 Cell: (559) 694-6000 www.JLBtraffic.com

From: Jose Benavides

Sent: Tuesday, October 31, 2017 5:27 PM

To: Jill Gormley (Jill.Gormley@fresno.gov) < Jill.Gormley@fresno.gov>

Cc: 'Xiong, Tong (PWP)' < tonxiong@co.fresno.ca.us>; Harpreet Kooner (HKooner@co.fresno.ca.us>; David Padilla (dave_padilla@dot.ca.gov>; Javier Rios jrios@jlbtraffic.com>; Susana Maciel

<smaciel@jlbtraffic.com>

Subject: North and Orange Avenue TIA

Good afternoon,

Attached you will find a proposed scope of work for a project in the City of Fresno for your review and comment. If your agency has no comments let us know as well.

Sincerely,

Jose Luis Benavides, P.E., T.E. President

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

1300 E. Shaw Ave., Ste. 103

Office: (559) 570-8991 Cell: (559) 694-6000 www.JLBtraffic.com

Fresno, CA 93710

Jose Benavides

From: Jill Gormley <Jill.Gormley@fresno.gov>
Sent: Friday, December 8, 2017 9:26 AM

To: Jose Benavides

Cc: David Padilla (dave_padilla@dot.ca.gov); Javier Rios; Susana Maciel

Subject: RE: North and Orange Avenue TIA

Please add the intersection of Cedar/North to the analysis.

jmg

Appendix B: Traffic Counts

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

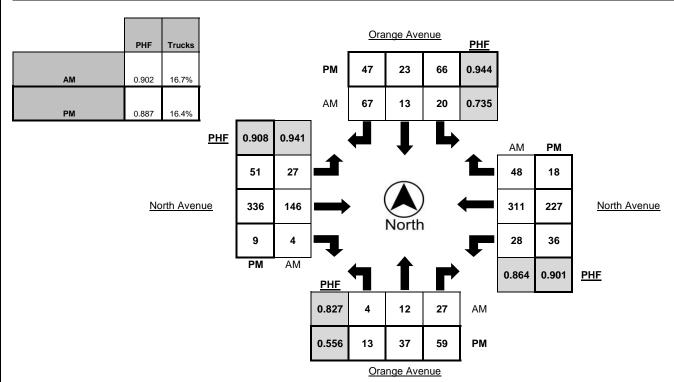
Prepared For:

Precision Civil Engineering, Inc. 1234 "O" Street

Fresno, CA 93721

Page 1 of 3

 LOCATION
 Orange Avenue @ North Avenue
 LATITUDE
 36.692431°


 COUNTY
 Fresno
 LONGITUDE
 -119.763730°

 COLLECTION DATE
 Thursday, April 28, 2016
 WEATHER
 Clear

		North	bound			South	Southbound Eastbound				ound			Westl		
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	2	2	1	7	2	11	1	11	34	0	14	12	75	14	13
7:15 AM - 7:30 AM	2	4	7	0	3	2	15	1	9	34	0	8	4	78	13	13
7:30 AM - 7:45 AM	0	3	5	1	8	4	10	5	4	39	1	13	8	78	8	17
7:45 AM - 8:00 AM	1	3	9	2	4	3	17	2	4	42	1	9	11	89	12	16
8:00 AM - 8:15 AM	1	2	6	2	5	4	25	5	10	31	2	10	5	66	15	14
8:15 AM - 8:30 AM	2	2	7	6	6	6	16	8	6	40	2	13	5	70	9	16
8:30 AM - 8:45 AM	0	6	4	1	8	5	7	4	8	50	1	11	2	52	9	21
8:45 AM - 9:00 AM	0	8	7	2	8	2	7	2	16	53	2	9	6	49	11	12
TOTAL	6	30	47	15	49	28	108	28	68	323	9	87	53	557	91	122

		North	bound			South	bound			Eastk	ound		Westbound			
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	5	4	7	1	19	4	9	4	15	92	2	17	6	68	4	23
4:15 PM - 4:30 PM	3	4	5	0	12	10	14	7	8	77	2	13	20	53	5	20
4:30 PM - 4:45 PM	1	20	28	1	18	3	13	4	17	86	4	14	8	56	6	21
4:45 PM - 5:00 PM	4	9	19	0	17	6	11	4	11	81	1	8	2	50	3	14
5:00 PM - 5:15 PM	1	13	17	1	19	4	16	4	22	77	1	15	7	46	4	14
5:15 PM - 5:30 PM	2	4	7	0	17	6	17	3	14	65	5	8	2	52	5	9
5:30 PM - 5:45 PM	1	1	9	0	13	5	10	2	8	50	2	12	7	49	2	15
5:45 PM - 6:00 PM	0	2	7	0	7	4	11	3	7	50	1	6	3	25	3	7
TOTAL	17	57	99	3	122	42	101	31	102	578	18	93	55	399	32	123

		Northbound Southbound								Eastl	oound		Westbound				
PEAK HOUR	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	
7:15 AM - 8:15 AM	4	12	27	5	20	13	67	13	27	146	4	40	28	311	48	60	
4:00 PM - 5:00 PM	13	37	59	2	66	23	47	19	51	336	9	52	36	227	18	78	

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

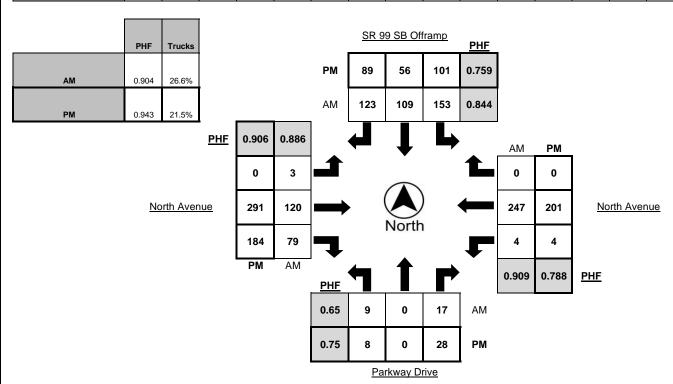
Prepared For:

Precision Civil Engineering, Inc. 1234 "O" Street

1234 "O" Street Fresno, CA 93721

Page 1 of 3

 LOCATION
 North Avenue @ SR 99 SB Offramp / Parkway Dr
 LATITUDE
 36.692375°


 COUNTY
 Fresno
 LONGITUDE
 -119.760721°

 COLLECTION DATE
 Thursday, April 28, 2016
 WEATHER
 Clear

		North	bound			South	bound			Easth	ound		Westbound				
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	
7:00 AM - 7:15 AM	4	0	3	3	47	21	30	21	0	15	26	17	0	66	0	12	
7:15 AM - 7:30 AM	0	0	2	2	32	17	25	14	0	30	17	11	1	69	0	11	
7:30 AM - 7:45 AM	2	0	1	2	41	25	26	11	0	31	19	18	0	69	0	17	
7:45 AM - 8:00 AM	3	0	3	2	44	28	42	28	0	32	21	16	0	66	0	9	
8:00 AM - 8:15 AM	1	0	6	4	32	37	29	23	0	22	20	15	3	57	0	19	
8:15 AM - 8:30 AM	3	0	7	3	36	19	26	24	3	35	19	24	1	55	0	15	
8:30 AM - 8:45 AM	5	0	5	5	39	16	16	20	0	39	23	16	1	38	0	17	
8:45 AM - 9:00 AM	2	0	5	4	44	23	28	24	0	46	23	14	1	39	0	8	
TOTAL	20	0	32	25	315	186	222	165	3	250	168	131	7	459	0	108	

		North	bound			South	bound			Eastk	ound		Westbound				
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	
4:00 PM - 4:15 PM	3	0	5	0	29	15	19	17	0	63	56	19	3	62	0	19	
4:15 PM - 4:30 PM	1	0	7	1	31	19	31	23	0	66	36	14	0	54	0	24	
4:30 PM - 4:45 PM	0	0	8	1	21	7	24	20	0	87	44	12	1	43	0	13	
4:45 PM - 5:00 PM	4	0	8	1	20	15	15	18	0	75	48	16	0	42	0	9	
5:00 PM - 5:15 PM	5	0	14	2	18	8	12	17	0	68	47	21	1	35	0	13	
5:15 PM - 5:30 PM	1	0	7	2	16	8	12	9	0	57	33	7	0	47	0	13	
5:30 PM - 5:45 PM	0	0	1	0	14	7	11	6	0	40	29	12	0	47	0	17	
5:45 PM - 6:00 PM	2	0	7	2	15	6	7	4	0	46	20	8	0	20	0	5	
TOTAL	16	0	57	9	164	85	131	114	0	502	313	109	5	350	0	113	

		North	bound			South	bound			Eastl	oound		Westbound			
PEAK HOUR	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:30 AM - 8:30 AM	9	0	17	11	153	109	123	86	3	120	79	73	4	247	0	60
4:00 PM - 5:00 PM	8	0	28	3	101	56	89	78	0	291	184	61	4	201	0	65

Metro Traffic Data Inc.

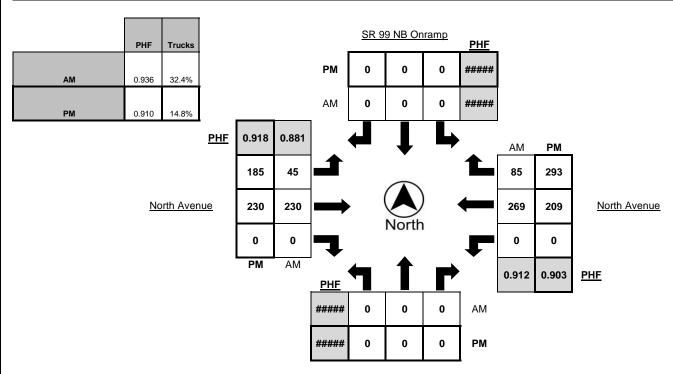
310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

Precision Civil Engineering, Inc. 1234 "O" Street


Fresno, CA 93721

LOCATION	North Avenue @ SR 99 NB Onramp	LATITUDE	36.692391°	
COUNTY	Fresno	LONGITUDE	-119.757932°	
COLLECTION DATE	Thursday, April 28, 2016	WEATHER	Clear	

		North	bound			South	bound			Eastk	ound		Westbound				
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	18	44	0	10	0	64	13	22	
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	9	56	0	20	0	68	22	26	
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	14	57	0	22	0	71	26	26	
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	9	69	0	24	0	68	18	26	
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	13	48	0	28	0	62	19	32	
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	12	69	0	31	0	54	17	31	
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	15	68	0	22	0	41	24	32	
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	14	78	0	25	0	42	21	45	
TOTAL	0	0	0	0	0	0	0	0	104	489	0	182	0	470	160	240	

		North	bound			South	bound			Eastk	ound		Westbound			
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	52	48	0	16	0	58	62	14
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	48	53	0	15	0	53	71	18
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	52	61	0	18	0	53	86	22
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	33	68	0	12	0	45	74	21
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	53	52	0	18	0	35	77	11
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	24	58	0	12	0	46	50	15
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	20	41	0	15	0	44	46	19
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	26	39	0	11	0	24	33	5
TOTAL	0	0	0	0	0	0	0	0	308	420	0	117	0	358	499	125

		North	bound			South	bound			Eastk	ound		Westbound			
PEAK HOUR	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	0	45	230	0	94	0	269	85	110
4:00 PM - 5:00 PM	0	0	0	0	0	0	0	0	185	230	0	61	0	209	293	75

1300 E. Shaw Ave., Ste. 103 Fresno, CA 93710 (559) 570-8991

Traffic Engineering, Transportation Planning & Parking Solutions www.JLBtraffic.com

File Name: North at Cedar 12132017

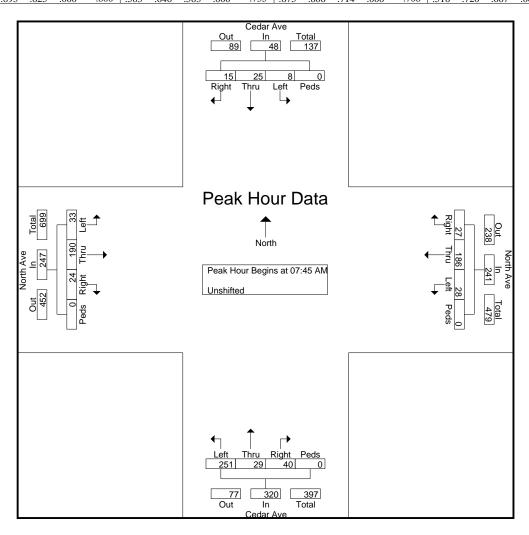
Site Code : 00121317 Start Date : 12/13/2017

Page No : 1

Groups Printed- Unshifted

								G	roups	<u>Printed</u>	<u>- Unsh</u>	ifted									_
		C	edar A	ve			N	orth A	ve			C	edar A	lve			N	orth A	ve		
		So	uthbou	ınd			W	estbou	ınd			No	rthbo	und			E	astbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	1	9	4	0	14	6	30	3	0	39	52	7	7	0	66	6	43	3	0	52	171
07:15 AM	1	5	6	0	12	7	38	1	0	46	59	5	3	0	67	6	45	1	0	52	177
07:30 AM	0	6	2	0	8	10	59	2	0	71	50	5	11	0	66	3	53	1	0	57	202
07:45 AM	1	7	1	0	9	5	63	1	0	69	93	9	11	0	113	4	66	5	0	75	266
Total	3	27	13	0	43	28	190	7	0	225	254	26	32	0	312	19	207	10	0	236	816
08:00 AM	3	7	5	0	15	5	15	12	0	32	56	6	14	0	76	16	41	9	0	66	189
08:15 AM	1	6	6	0	13	12	36	10	0	58	52	7	5	0	64	6	43	7	0	56	191
08:30 AM	3	5	3	0	11	6	72	4	0	82	50	7	10	0	67	7	40	3	0	50	210
08:45 AM	1	7	3	0	11	7	51	2	0	60	45	5	8	0	58	4	52	5	0	61	190
Total	8	25	17	0	50	30	174	28	0	232	203	25	37	0	265	33	176	24	0	233	780

04:00 PM	1	5	9	0	15	10	79	2	0	91	69	11	13	0	93	0	55	3	0	58	257
04:15 PM	5	3	10	0	18	13	66	0	0	79	55	12	9	0	76	5	68	1	0	74	247
04:30 PM	1	3	5	0	9	8	89	3	0	100	58	11	21	0	90	2	61	1	0	64	263
04:45 PM	3	3	5	0	11	5	71_	2	0	78_	32	3	9	0	44	3	55	0	0	58	191
Total	10	14	29	0	53	36	305	7	0	348	214	37	52	0	303	10	239	5	0	254	958
						ı															
05:00 PM	7	6	2	0	15	12	73	1	0	86	35	6	13	0	54	0	72	0	0	72	227
05:15 PM	1	1	6	0	8	9	42	5	0	56	34	8	6	0	48	7	46	3	0	56	168
05:30 PM	3	3	4	0	10	9	49	4	0	62	36	12	9	0	57	3	44	4	0	51	180
05:45 PM	4	2	3	0	9	4	50	3	0	57	25	4	10	0	39	3	34	0	0	37	142
Total	15	12	15	0	42	34	214	13	0	261	130	30	38	0	198	13	196	7	0	216	717
	1					1															
Grand Total	36	78	74	0	188	128	883	55	0	1066	801	118	159	0	1078	75	818	46	0	939	3271
Apprch %	19.1	41.5	39.4	0		12	82.8	5.2	0		74.3	10.9	14.7	0		8	87.1	4.9	0		
Total %	1.1	2.4	2.3	0	5.7	3.9	27	1.7	0	32.6	24.5	3.6	4.9	0	33	2.3	25	1.4	0	28.7	

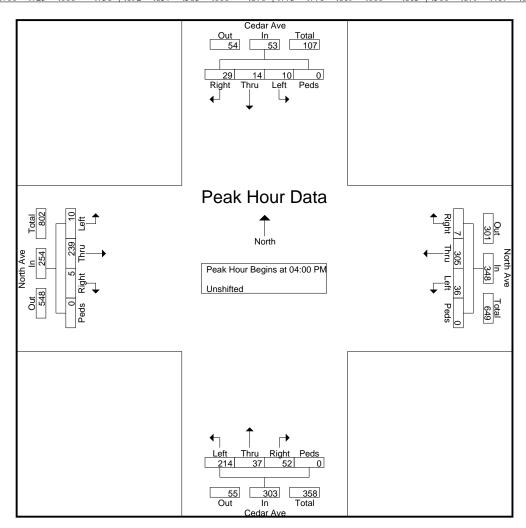

1300 E. Shaw Ave., Ste. 103 Fresno, CA 93710 (559) 570-8991

Traffic Engineering, Transportation Planning & Parking Solutions www.JLBtraffic.com

File Name: North at Cedar 12132017

Site Code : 00121317 Start Date : 12/13/2017

		_	edar A					orth A				_	edar A					orth A			
		Sou	uthbou	ınd			W	estbou	nd			No	rthbo	und			Ea	astbou	nd		
Start	Left	Then	Distr	D- 4-		Left	Then	Dista	D- 4-		Left	Then	Distr	D- 4-		Left	Than	Distri	D- J-		l
Time	Len	Thru	Right	Peds	App. Total	Leit	Thru	Right	Peds	App. Total	Len	Thru	Right	Peds	App. Total	Leit	Thru	Right	Peds	App. Total	Int. Tota
Peak Hour Ar	nalysis	From ()7:00 A	M to 1	1:45 AM	1 - Peal	k 1 of 1	l													
Peak Hour for	Entire	Inters	ection l	Begins	at 07:45	AM															
07:45 AM	1	7	1	0	9	5	63	1	0	69	93	9	11	0	113	4	66	5	0	75	266
08:00 AM	3	7	5	0	15	5	15	12	0	32	56	6	14	0	76	16	41	9	0	66	189
08:15 AM	1	6	6	0	13	12	36	10	0	58	52	7	5	0	64	6	43	7	0	56	191
08:30 AM	3	5	3	0	11	6	72	4	0	82	50	7	10	0	67	7	40	3	0	50	210
Total Volume	8	25	15	0	48	28	186	27	0	241	251	29	40	0	320	33	190	24	0	247	856
% App. Total	16.7	52.1	31.2	0		11.6	77.2	11.2	0		78.4	9.1	12.5	0		13.4	76.9	9.7	0		
PHF	.667	.893	.625	.000	.800	.583	.646	.563	.000	.735	.675	.806	.714	.000	.708	.516	.720	.667	.000	.823	.805


1300 E. Shaw Ave., Ste. 103 Fresno, CA 93710 (559) 570-8991

Traffic Engineering, Transportation Planning & Parking Solutions www.JLBtraffic.com

File Name: North at Cedar 12132017

Site Code : 00121317 Start Date : 12/13/2017

		_	edar A					orth A				_	edar A					orth A			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Tota
Peak Hour Ar	alysis	From 1	2:00 P	M to 0	5:45 PM	- Peak	1 of 1														
Peak Hour for	Entire	Inters	ection 1	Begins	at 04:00	PM															
04:00 PM	1	5	9	0	15	10	79	2	0	91	69	11	13	0	93	0	55	3	0	58	257
04:15 PM	5	3	10	0	18	13	66	0	0	79	55	12	9	0	76	5	68	1	0	74	247
04:30 PM	1	3	5	0	9	8	89	3	0	100	58	11	21	0	90	2	61	1	0	64	263
04:45 PM	3	3	5	0	11	5	71	2	0	78	32	3	9	0	44	3	55	0	0	58	191
Total Volume	10	14	29	0	53	36	305	7	0	348	214	37	52	0	303	10	239	5	0	254	958
% App. Total	18.9	26.4	54.7	0		10.3	87.6	2	0		70.6	12.2	17.2	0		3.9	94.1	2	0		
PHF	.500	.700	.725	.000	.736	.692	.857	.583	.000	.870	.775	.771	.619	.000	.815	.500	.879	.417	.000	.858	.911

516 W. Shaw Ave., Ste. 200 Fresno, CA 93704 (559) 570-8991

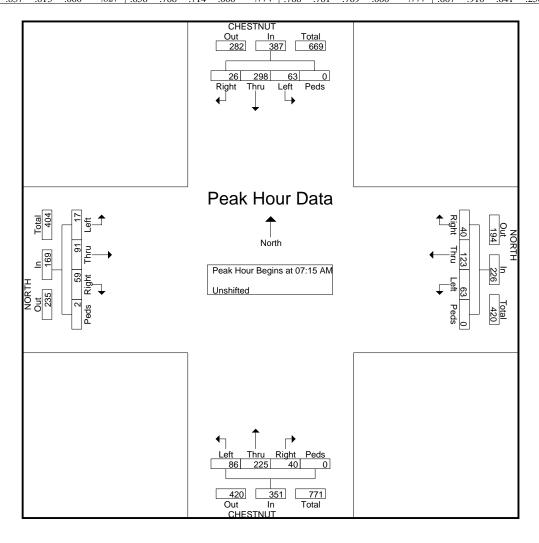
Traffic Engineering, Transportation Planning & Parking Solutions www.JLBtraffic.com

File Name: 5 North at Chestnut

Site Code : 00000000 Start Date : 5/18/2016

								G	roups	Printed	- Unsh	ifted									_
		CHEST	TNUT				NOR	ГН			(CHEST	TNUT				NOR	ГН			
		So	uthbou	ınd			W	estbou	nd			No	rthbo	und			E	astbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	8	42	2	0	52	10	24	2	0	36	25	34	3	0	62	4	20	10	0	34	184
07:15 AM	10	69	8	0	87	9	25	10	0	44	27	45	9	0	81	3	19	12	0	34	246
07:30 AM	18	69	6	0	93	12	29	6	0	47	12	63	8	0	83	7	24	23	0	54	277
07:45 AM	20	89	8	0	117	24	39	10	0	73	28	72	13	0	113	1	23	10	2	36	339
Total	56	269	24	0	349	55	117	28	0	200	92	214	33	0	339	15	86	55	2	158	1046
08:00 AM	15	71	4	0	90	18	30	14	0	62	19	45	10	0	74	6	25	14	0	45	271
08:15 AM	11	55	6	0	72	11	25	7	0	43	20	62	6	0	88	4	20	12	0	36	239
08:30 AM	10	43	8	0	61	8	28	5	0	41	22	56	2	0	80	1	20	12	0	33	215
08:45 AM	10	66	5	0	81	6	33	7	0	46	21	48	6	0	75	8	21	14	0	43	245
Total	46	235	23	0	304	43	116	33	0	192	82	211	24	0	317	19	86	52	0	157	970
at a trade at a trade																					

04:00 PM	6	63	9	0	78	10	31	16	0	57	29	112	14	0	155	10	33	18	0	61	351
04:15 PM	7	88	7	0	102	10	26	17	1	54	22	126	7	2	157	2	23	13	0	38	351
04:30 PM	8	79	1	0	88	13	20	24	1	58	11	124	16	0	151	4	34	22	1	61	358
04:45 PM	9	77	6	0	92	11	30	15	0	56	17	137	17	0	171	10	31	21	0	62	381
Total	30	307	23	0	360	44	107	72	2	225	79	499	54	2	634	26	121	74	1	222	1441
05:00 PM	5	79	6	0	90	11	37	20	0	68	18	116	8	0	142	6	37	23	1	67	367
05:15 PM	6	107	2	0	115	12	26	9	0	47	5	87	7	0	99	7	32	19	0	58	319
05:30 PM	8	68	3	0	79	13	29	20	1	63	12	75	10	0	97	9	27	9	0	45	284
05:45 PM	3	63	1	0	67	6	16	9	0	31	6	73	5	0	84	7	23	16	0	46	228
Total	22	317	12	0	351	42	108	58	1	209	41	351	30	0	422	29	119	67	1	216	1198
Grand Total	154	1128	82	0	1364	184	448	191	3	826	294	1275	141	2	1712	89	412	248	4	753	4655
Apprch %	11.3	82.7	6	0		22.3	54.2	23.1	0.4		17.2	74.5	8.2	0.1		11.8	54.7	32.9	0.5		
Total %	3.3	24.2	1.8	0	29.3	4	9.6	4.1	0.1	17.7	6.3	27.4	3	0	36.8	1.9	8.9	5.3	0.1	16.2	

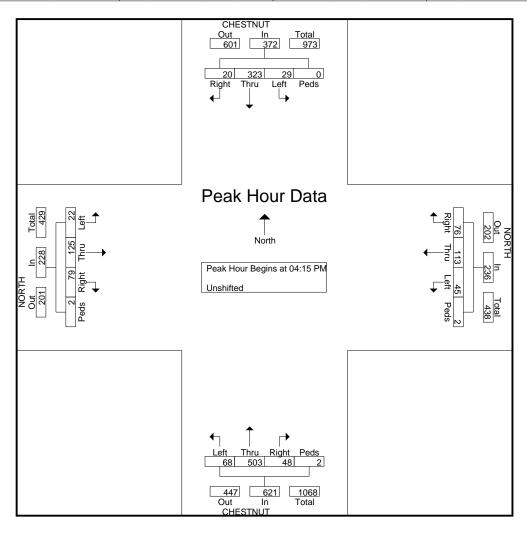

516 W. Shaw Ave., Ste. 200 Fresno, CA 93704 (559) 570-8991

Traffic Engineering, Transportation Planning & Parking Solutions www.JLBtraffic.com

File Name: 5 North at Chestnut

Site Code : 00000000 Start Date : 5/18/2016

	C	CHEST	NUT				NOR	ГН			(CHEST	TNUT				NOR	ГН]
		Sou	uthbou	ınd			W	estbou	ınd			No	rthbou	und			Ea	astbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Tota
Peak Hour Ar	nalysis	From ()7:00 A	M to 1	1:45 AN	I - Pea	k 1 of 1	1													
Peak Hour for	Entire	Inters	ection 1	Begins	at 07:15	AM															
07:15 AM	10	69	8	0	87	9	25	10	0	44	27	45	9	0	81	3	19	12	0	34	240
07:30 AM	18	69	6	0	93	12	29	6	0	47	12	63	8	0	83	7	24	23	0	54	27
07:45 AM	20	89	8	0	117	24	39	10	0	73	28	72	13	0	113	1	23	10	2	36	339
08:00 AM	15	71	4	0	90	18	30	14	0	62	19	45	10	0	74	6	25	14	0	45	27
Total Volume	63	298	26	0	387	63	123	40	0	226	86	225	40	0	351	17	91	59	2	169	1133
% App. Total	16.3	77	6.7	0		27.9	54.4	17.7	0		24.5	64.1	11.4	0		10.1	53.8	34.9	1.2		
PHF	.788	.837	.813	.000	.827	.656	.788	.714	.000	.774	.768	.781	.769	.000	.777	.607	.910	.641	.250	.782	.836


516 W. Shaw Ave., Ste. 200 Fresno, CA 93704 (559) 570-8991

Traffic Engineering, Transportation Planning & Parking Solutions www.JLBtraffic.com

File Name: 5 North at Chestnut

Site Code : 00000000 Start Date : 5/18/2016

	(CHEST	TNUT				NOR	ГН			(CHEST	TNUT				NOR	ГН]
		Sou	uthbou	ınd			W	estbou	ınd			No	rthbo	und			E	astbou	nd		
Start	Left	Then	Distri	D- 4-		Left	Then	Distri	D- 4-		Left	Then	Distr	D- 4-		Loft	Then	Dista	D- 4-		
Time	Len	Thru	Right	Peds	App. Total	Lett	Thru	Right	Peds	App. Total	Len	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From 1	2:00 P	M to 0	5:45 PM	- Peak	1 of 1														
Peak Hour for	Entire	Inters	ection 1	Begins	at 04:15	PM															
04:15 PM	7	88	7	0	102	10	26	17	1	54	22	126	7	2	157	2	23	13	0	38	351
04:30 PM	8	79	1	0	88	13	20	24	1	58	11	124	16	0	151	4	34	22	1	61	358
04:45 PM	9	77	6	0	92	11	30	15	0	56	17	137	17	0	171	10	31	21	0	62	381
05:00 PM	5	79	6	0	90	11	37	20	0	68	18	116	8	0	142	6	37	23	1	67	367
Total Volume	29	323	20	0	372	45	113	76	2	236	68	503	48	2	621	22	125	79	2	228	1457
% App. Total	7.8	86.8	5.4	0		19.1	47.9	32.2	0.8		11	81	7.7	0.3		9.6	54.8	34.6	0.9		
PHF	.806	.918	.714	.000	.912	.865	.764	.792	.500	.868	.773	.918	.706	.250	.908	.550	.845	.859	.500	.851	.956

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

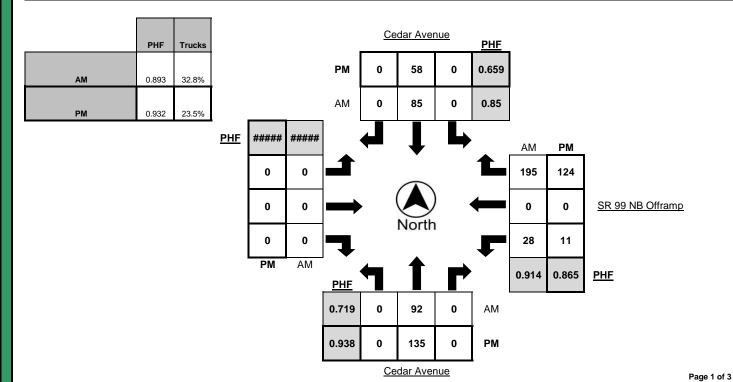
Turning Movement Report

Prepared For:

Precision Civil Engineering, Inc. 1234 "O" Street

Fresno, CA 93721

 LOCATION
 Cedar Avenue @ SR 99 NB Offramp
 LATITUDE
 36.690605°


 COUNTY
 Fresno
 LONGITUDE
 -119.754691°

 COLLECTION DATE
 Thursday, April 28, 2016
 WEATHER
 Clear

		North	bound			South	bound			Eastk	ound			Westl	bound	
Time	Left	Thru	Right	Trucks												
7:00 AM - 7:15 AM	0	18	0	7	0	11	0	3	0	0	0	0	6	0	50	12
7:15 AM - 7:30 AM	0	8	0	2	0	11	0	5	0	0	0	0	10	0	47	16
7:30 AM - 7:45 AM	0	15	0	3	0	23	0	7	0	0	0	0	6	0	47	12
7:45 AM - 8:00 AM	0	26	0	6	0	25	0	3	0	0	0	0	6	0	55	13
8:00 AM - 8:15 AM	0	19	0	11	0	15	0	8	0	0	0	0	8	0	47	23
8:15 AM - 8:30 AM	0	32	0	18	0	22	0	8	0	0	0	0	8	0	46	19
8:30 AM - 8:45 AM	0	22	0	10	0	18	0	4	0	0	0	0	6	0	28	16
8:45 AM - 9:00 AM	0	28	0	12	0	19	0	9	0	0	0	0	9	0	31	13
TOTAL	0	168	0	69	0	144	0	47	0	0	0	0	59	0	351	124

		North	bound			South	bound			Eastl	oound			Westl	bound	
Time	Left	Thru	Right	Trucks												
4:00 PM - 4:15 PM	0	20	0	3	0	15	0	4	0	0	0	0	3	0	32	14
4:15 PM - 4:30 PM	0	32	0	4	0	22	0	8	0	0	0	0	3	0	29	15
4:30 PM - 4:45 PM	0	36	0	5	0	15	0	3	0	0	0	0	4	0	33	13
4:45 PM - 5:00 PM	0	35	0	3	0	9	0	0	0	0	0	0	3	0	36	13
5:00 PM - 5:15 PM	0	32	0	1	0	12	0	1	0	0	0	0	1	0	26	11
5:15 PM - 5:30 PM	0	30	0	1	0	10	0	1	0	0	0	0	2	0	24	12
5:30 PM - 5:45 PM	0	21	0	3	0	7	0	1	0	0	0	0	2	0	23	11
5:45 PM - 6:00 PM	0	17	0	0	0	8	0	2	0	0	0	0	2	0	15	5
ΤΟΤΔΙ	0	223	0	20	0	98	0	20	0	0	0	0	20	0	218	94

		North	bound			South	bound			Eastl	oound			Westl	bound	
PEAK HOUR	Left	Thru	Right	Trucks												
7:30 AM - 8:30 AM	0	92	0	38	0	85	0	26	0	0	0	0	28	0	195	67
4-15 DM - 5-15 DM	0	135	0	13	٥.	58	٥.	12	0	0	0	0	11	0	124	52

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

Precision Civil Engineering, Inc. 1234 "O" Street

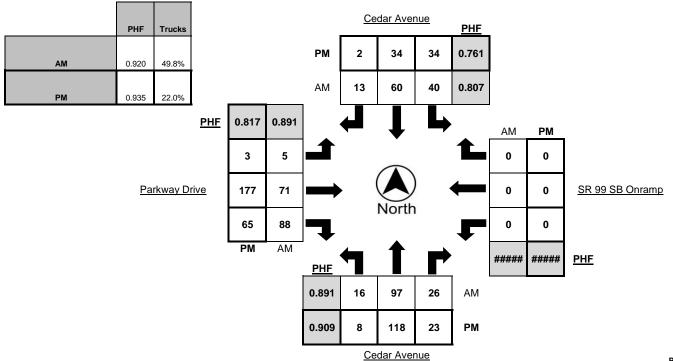
1234 "O" Street Fresno, CA 93721

LOCATION Cedar Ave @ Parkway Drive / SR 99 SB Onramp

COUNTY Fresno

COLLECTION DATE Thursday, April 28, 2016

LATITUDE 36.687401°


LONGITUDE -119.754700°

WEATHER Clear

		North	bound			South	bound			Eastk	ound			Westl	bound	
Time	Left	Thru	Right	Trucks												
7:00 AM - 7:15 AM	2	21	3	12	4	9	4	7	0	32	35	30	0	0	0	0
7:15 AM - 7:30 AM	0	9	4	6	6	14	1	10	0	13	18	13	0	0	0	0
7:30 AM - 7:45 AM	1	13	6	11	11	17	1	10	0	19	21	10	0	0	0	0
7:45 AM - 8:00 AM	2	31	6	15	13	14	2	7	0	20	25	16	0	0	0	0
8:00 AM - 8:15 AM	5	15	7	13	11	11	3	12	0	20	26	23	0	0	0	0
8:15 AM - 8:30 AM	4	28	7	30	10	19	6	22	3	12	20	19	0	0	0	0
8:30 AM - 8:45 AM	5	23	6	21	6	16	2	11	2	19	17	18	0	0	0	0
8:45 AM - 9:00 AM	6	26	1	17	12	10	1	13	0	22	20	24	0	0	0	0
TOTAL	25	166	40	125	73	110	20	92	5	157	182	153	0	0	0	0

		North	bound			South	bound			Eastk	ound			West	bound	
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	2	22	6	6	7	10	1	5	0	58	17	18	0	0	0	0
4:15 PM - 4:30 PM	2	30	5	9	13	6	1	6	0	33	21	12	0	0	0	0
4:30 PM - 4:45 PM	2	35	4	7	11	12	0	9	3	42	15	8	0	0	0	0
4:45 PM - 5:00 PM	2	31	8	9	3	6	0	2	0	44	12	11	0	0	0	0
5:00 PM - 5:15 PM	3	35	1	1	9	4	0	1	0	44	12	16	0	0	0	0
5:15 PM - 5:30 PM	2	28	4	2	2	6	2	3	1	26	10	4	0	0	0	0
5:30 PM - 5:45 PM	2	14	2	4	4	7	1	3	1	33	9	8	0	0	0	0
5:45 PM - 6:00 PM	2	17	1	1	5	4	1	3	1	18	7	7	0	0	0	0
TOTAL	17	212	31	39	54	55	6	32	6	298	103	84	0	0	0	0

		North	bound			South	bound			Eastk	oound			Westl	oound	
PEAK HOUR	Left	Thru	Right	Trucks												
7:45 AM - 8:45 AM	16	97	26	79	40	60	13	52	5	71	88	76	0	0	0	0
4:00 PM - 5:00 PM	8	118	23	31	34	34	2	22	3	177	65	49	0	0	0	0

Page 1 of 3

Appendix C: Traffic Modeling

November <u>913</u>, 2017

Kai Han, TE Council of Fresno County Governments 2035 Tulare Street, Suite 201 Fresno, CA 93721

Via E-mail Only: khan@fresnocog.org

Subject: <u>Revised</u> Traffic Modeling Request for the Preparation of a Traffic Impact Analysis

for a Commercial Development at the Northeast Corner of North Avenue and

Orange Avenue in the City of Fresno (JLB Project 004-051)

Dear Mr. Han,

JLB Traffic Engineering, Inc. (JLB) hereby requests traffic modeling for the Project described below. This modeling request is hereby revised to account for the change in the Project's proposed land use. The commercial development (Project) proposes to construct a gasoline/service station (12 fueling positions) with convenience market, a 2,000 square-foot coffee/donut shop with drive-through window, a 1,5003,000 square-footsquare feet of fast-food restaurant without drive-through window, a 1,500 square-foot high-turnover (sit-down) restaurant, and 6,000 square feet of fast-food restaurant with drive-through windows at the northeast corner of North Avenue and Orange Avenue in the City of Fresno. Per information provided to JLB, the Project is consistent with the City of Fresno General Plan. An aerial of the Project vicinity is shown in Exhibit A.

The purpose of this TIA is to evaluate the potential on- and off-site traffic impacts, identify short-term roadway and circulation needs, determine potential mitigation measures and identify any critical traffic issues that should be addressed in the on-going planning process.

Scenarios

The following scenarios are requested:

- 1. Base Year 2017 2016 (with Link and TAZ modifications)
- 2. Base Year 2017-2016 plus Project Select Zone (with Link and TAZ modifications)
- 3. Cumulative Year 2035 plus Project Select Zone (with Link and TAZ modifications)
- 4. Differences between model runs 3 and 1 above

Changes and/or additions to the Model Network or TAZ's

JLB reviewed the Fresno COG model network for the Base Year 2017–2016 and Cumulative Year 2035. Based on this review, JLB requests the following link and TAZ network modifications. Details on the requested Link and TAZ modifications for Base Year 2017–2016 and Cumulative Year 2035 are illustrated in Exhibit B.

www.JLBtraffic.com

Page | 1

Mr. Han

Fresno COG Modeling Request (Project 004-051)

November **913**, 2017

LINK and TAZ ZONE MODIFICATIONS (For Base Year 2017-2016 and Base Year 2017-2016 plus Project Select Zone Scenarios)

1. Modify North Avenue to increase the westbound lanes between Nodes 2951 and 5294 to two lanes.

LINK and TAZ MODIFICATIONS (For Base Year 20172016, Base Year 20172016 plus Project Select Zone and Cumulative Year 2035 plus Project Select Zone Scenarios)

- 1. Modify TAZ 1493 as follows:
 - a. Eliminate TAZ Connectors to Nodes 5295 and 5294.
 - b. Create TAZ Connector to Orange Avenue (west).
- 2. Modify TAZ 1601 as follows:
 - a. Relocate TAZ 1601
 - b. Eliminate TAZ Connectors to Nodes 8102, 5294 and 8100.
 - c. Create TAZ Connector to Orange Avenue (west).
 - d. Create TAZ Connector to Parkway Drive (northeast).
- 3. Reduce the speed limit on Parkway Drive to 45 mph.

LINK and TAZ MODIFICATIONS (For Base Year 2017–2016 plus Project Select Zone and Cumulative Year 2035 plus Project Select Zone Scenarios)

1. Create TAZ A bounded by Orange Avenue (west) and North Avenue (south). TAZ A shall have TAZ Connectors to Orange Avenue (north) and North Avenue (south).

LINK and TAZ ZONE MODIFICATIONS (For Cumulative Year 2035 plus Project Select Zone Scenario Only)

- 1. Modify Orange Avenue to reduce the northbound lanes between Nodes 5295 and 3528 south of Jensen Avenue to one lane in each direction.
- 2. Modify Cedar Avenue to reduce the lanes between Nodes 2940 and 2962 south of Golden State

 Boulevard to one lane in each direction.
- 3. Modify Parkway Drive as follows:
 - a. Eliminate the roadway segment connection to North Avenue at Node 3692 approximately 1,000 feet southeast of North Avenue.
 - b. Create a roadway segment connection to Orange Avenue (west) approximately 675 feet south of North Avenue.
 - i. Name: Parkway Drive
 - ii. Lanes: One in each direction
 - iii. Speed: 45 mph
- 4. Eliminate the Cedar Avenue and State Route 99 ramps. These include the roadway segments between Nodes 3693 and 4529 and between Nodes 3695 and 3694.
- 5. Create North Avenue and State Route 99 ramps. These include the roadway segments extending from Node 3692 to Node 7026 and from Node 3690 to Node 7025.

www.JLBtraffic.com

info@JLBtraffic.com

Page | 2

Mr. Han

Fresno COG Modeling Request (Project 004-051)

November , 2017

TAZ A Project Only Trip Generation (For Base Year 2017-2016 plus Project Select Zone and Cumulative Year 2035 plus Project Select Zone Scenarios)

Table I presents the trip generation for the proposed Project pursuant to the 10th Edition of the Trip Generation Manual with trip generation rates for a Gasoline/Service Station with Convenience Market, Coffee/Donut Shop with Drive-Through Window, Fast-Food Restaurant without Drive-Through Window, High Turnover (Sit Down) Restaurant, and Fast-Food Restaurant with Drive-Through Window. At buildout, the Project is estimated to generate a maximum of 7,6187,970 daily trips, 622 644 AM peak hour trips and 509-536 PM peak hour trips.

Table I: TAZ A Project Only Trip Generation

Land Use (ITE Code)	Size	Unit	Daily		AM Peak Hour						PM Peak Hour					
			Rate	Total	Trip	In	Out	In	Out	Total	Trip	In	Out	In	Out	Total
					Rate	9	% III		Out	Total	Rate	%		ın	Out	Total
Gasoline/Service Station with Convenience Market (945)	12	f.p.	205.36	2,464	12.47	51	49	77	74	150	13.99	51	49	86	82	168
Coffee/Donut Shop with Drive-Through Window (937)	2.000	k.s.f.	820.38	1,641	88.99	51	49	91	87	178	43.38	50	50	44	43	87
Fast-Food Restaurant without Drive-Through Window (934)	1.500 3.000	k.s.f.	346.23	519 <u>1,039</u>	25.10	60	40	23 45	15 <u>30</u>	38 75	28.34	50	50	22 43	21 <u>42</u>	43 85
High Turnover (Sit Down) Restaurant (932)	1.500	k.s.f.	112.18	168	9.94	55	45	8	7	15	9.77	62	38	9	6	15
Fast-Food Restaurant with Drive-Through Window (934)	6.000	k.s.f.	470.95	2,826	40.19	51	49	123	118	241	32.67	52	48	102	94	196
				7,618				322	301	622				263	246	509
Total Project Trips				<u>7,970</u>				<u>336</u>	<u>309</u>	<u>644</u>				<u>275</u>	<u>261</u>	<u>536</u>

Note:

f.p. = Fueling Positions

k.s.f. = Thousand Square Feet

Access to the Project

Access to and from the Project site is from two points. One of the access points is an existing access point located along the east side of Orange Avenue at a point approximately 250 feet north of North Avenue and is a full access. The second access point is a proposed access located on the north side of North Avenue at a point approximately 350 feet east of Orange Avenue and is proposed as a right-in, right-out only access.

Please invoice JLB Traffic Engineering, Inc. and reference JLB Project No. 004-051 on the invoice. If you have any questions or require additional information, please do not hesitate to contact me by phone at (559) 570-8991 or by e-mail at smaciel@JLBtraffic.com.

Sincerely,

Susana Maciel

Susana Maciel, EIT Engineer I/II

cc:

Jose Benavides, PE, TE, President Muyi Zhou, Regional Planner

Z:\01 Projects\004 Fresno\004-051 North & Orange TIA\Model Request\L11132017 Revised Model Request.docx

1300 E. Shaw Ave., Ste. 103

Fresno, CA 93710

info@JLBtraffic.com

www.JLBtraffic.com

(559) 570-8991

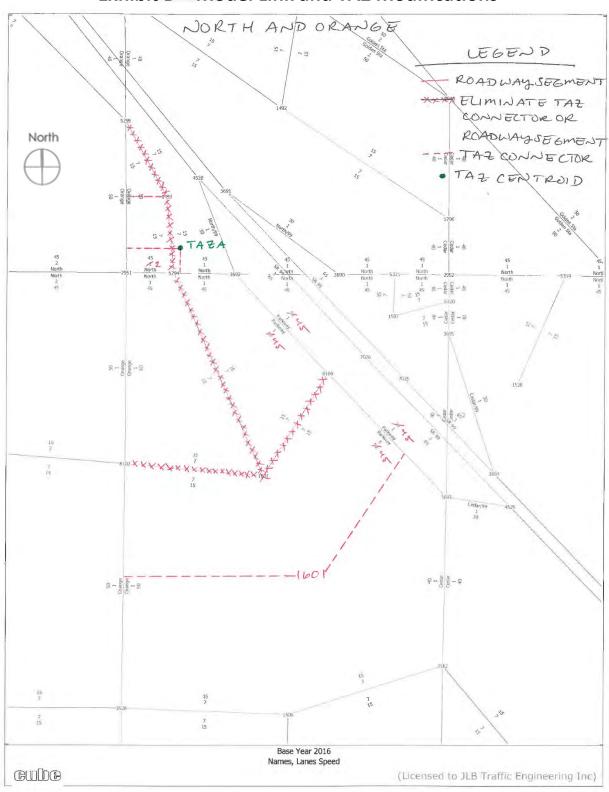

Page | 3

Exhibit A – Aerial

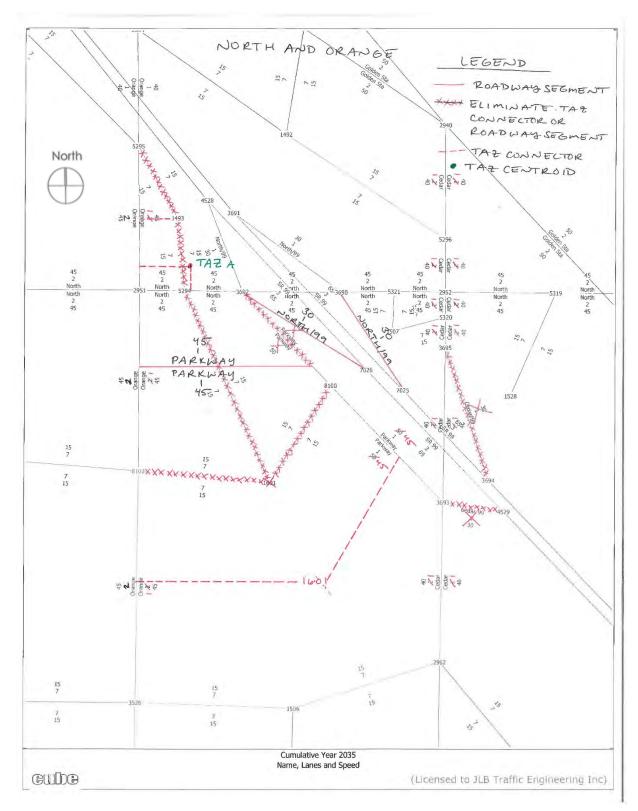
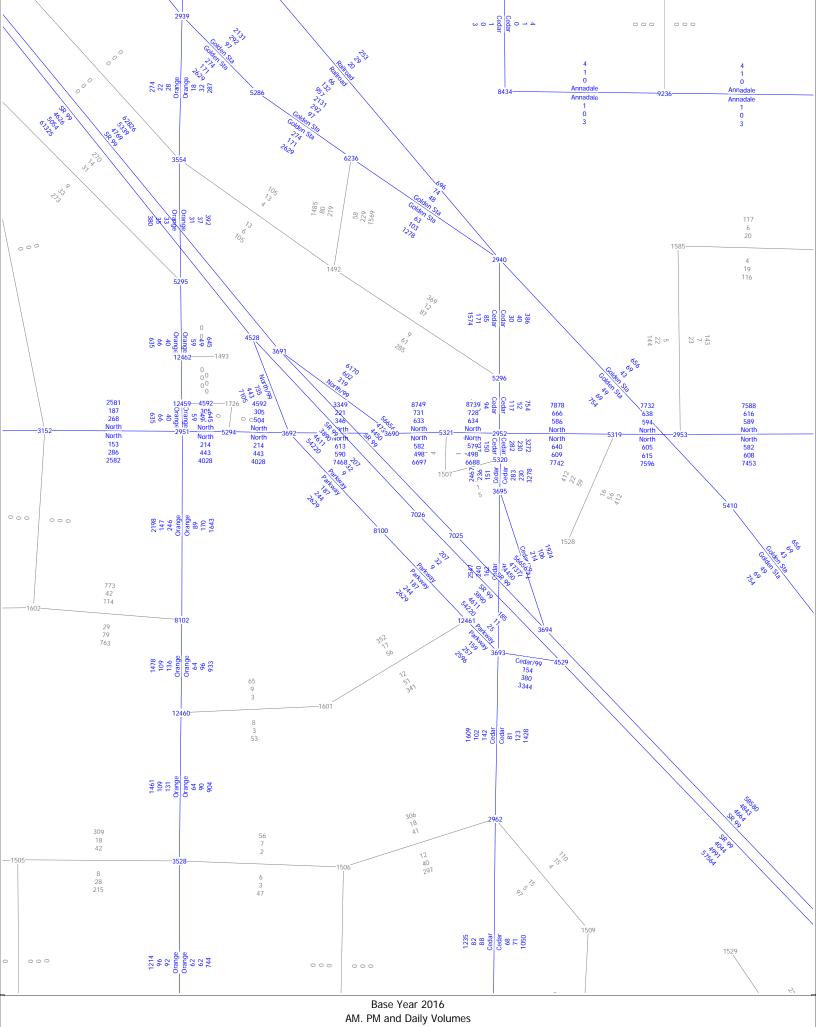
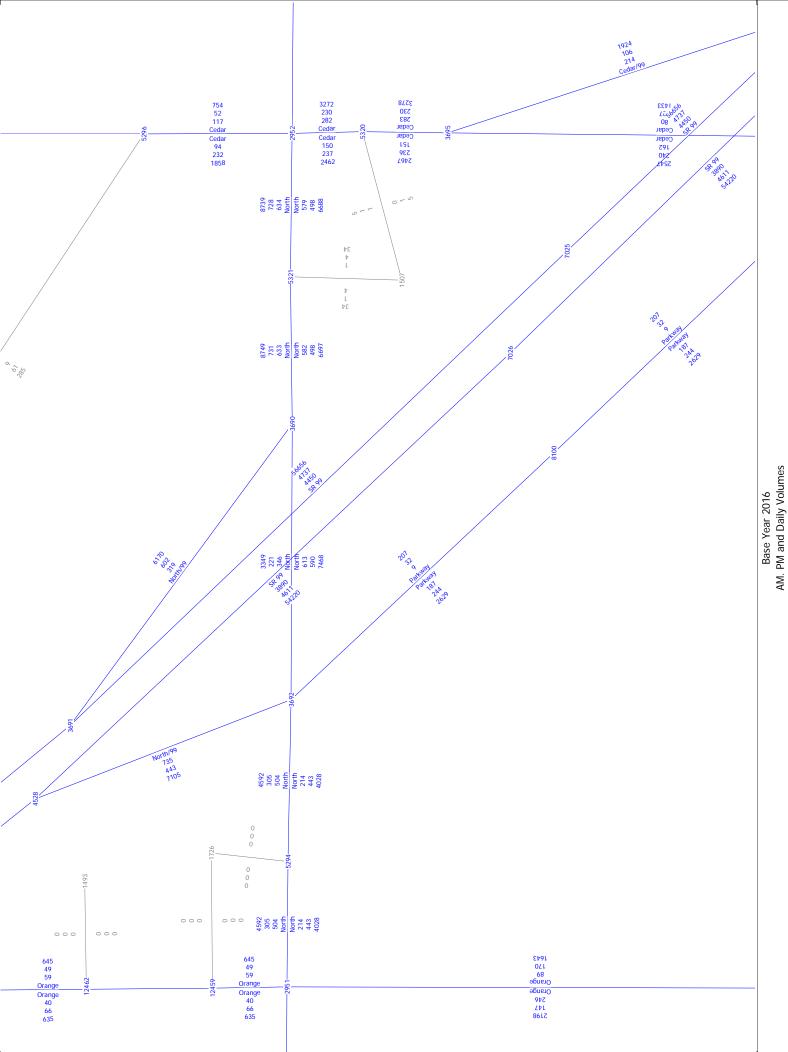
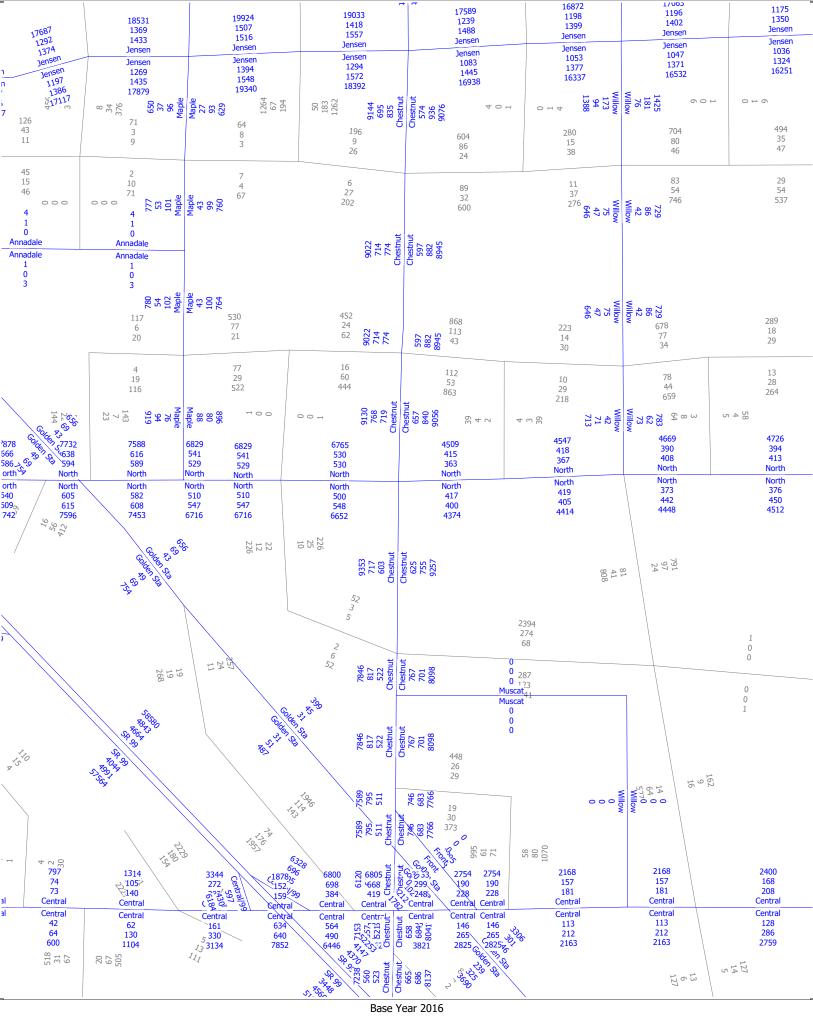
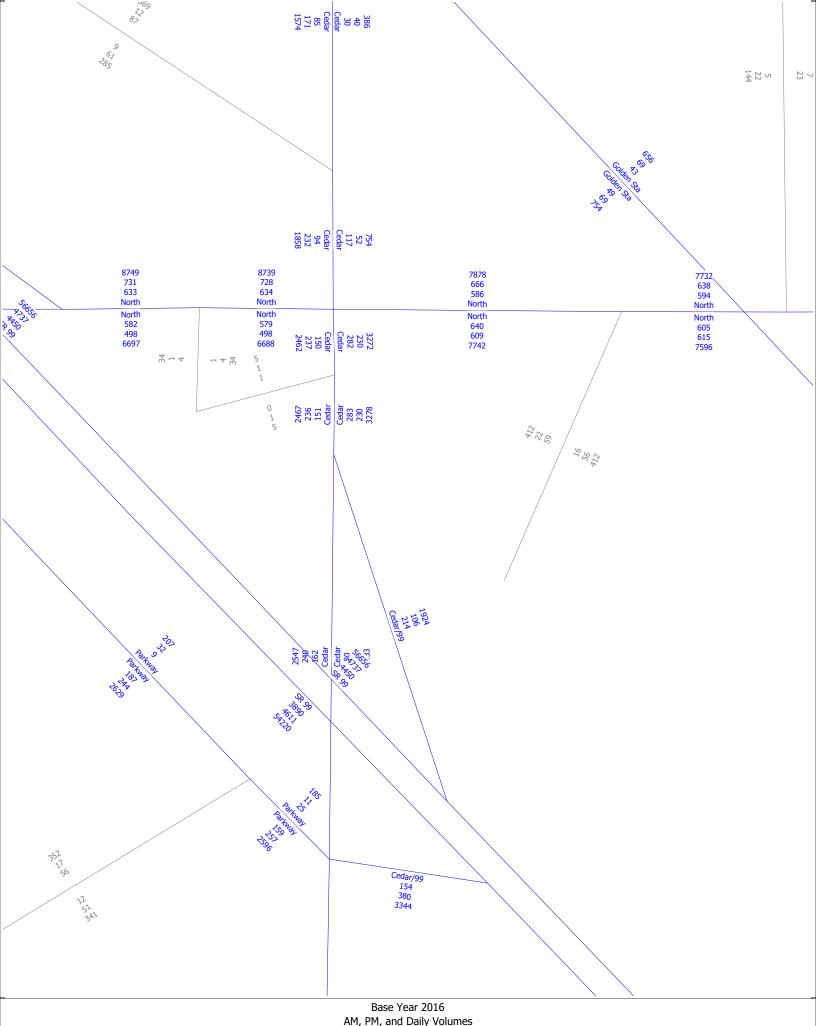

1300 E. Shaw Ave., Ste. 103

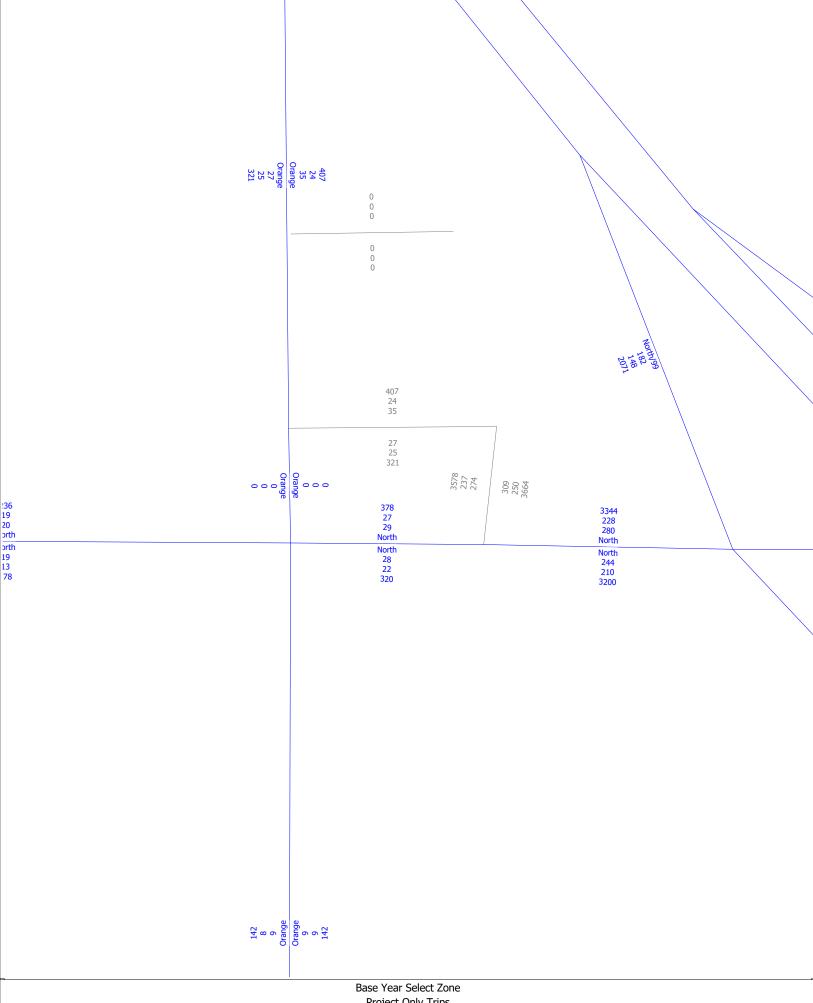
Exhibit B - Model Link and TAZ Modifications

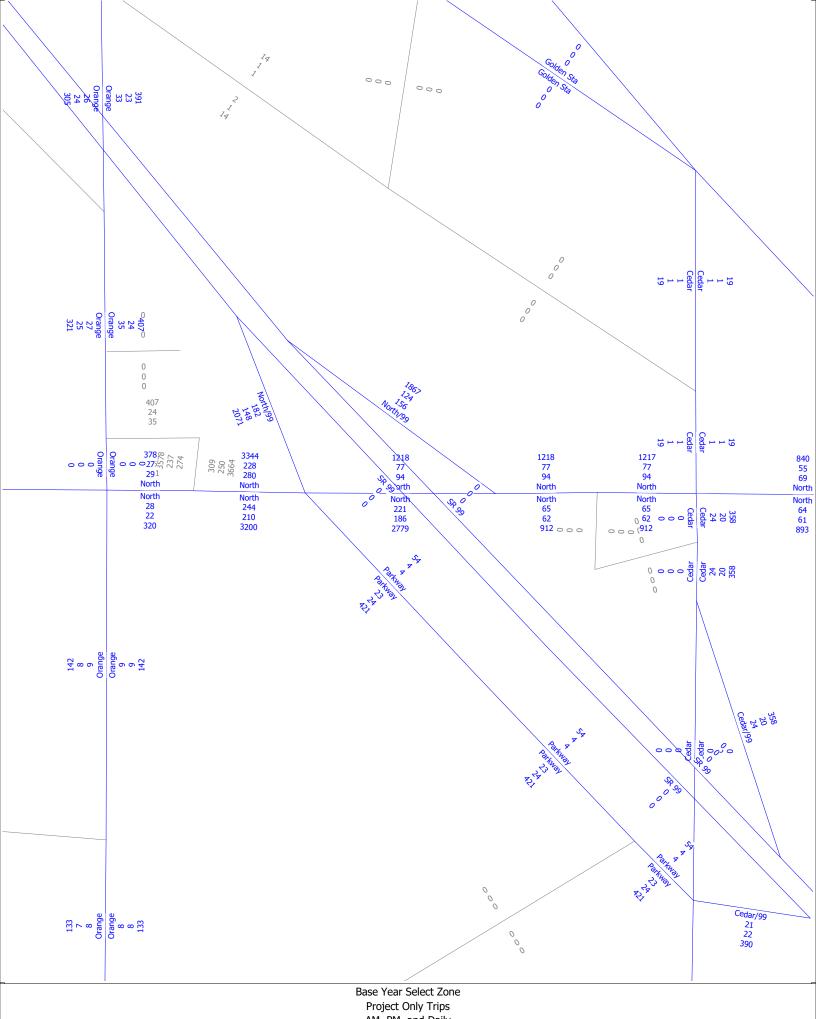



info@JLBtraffic.com

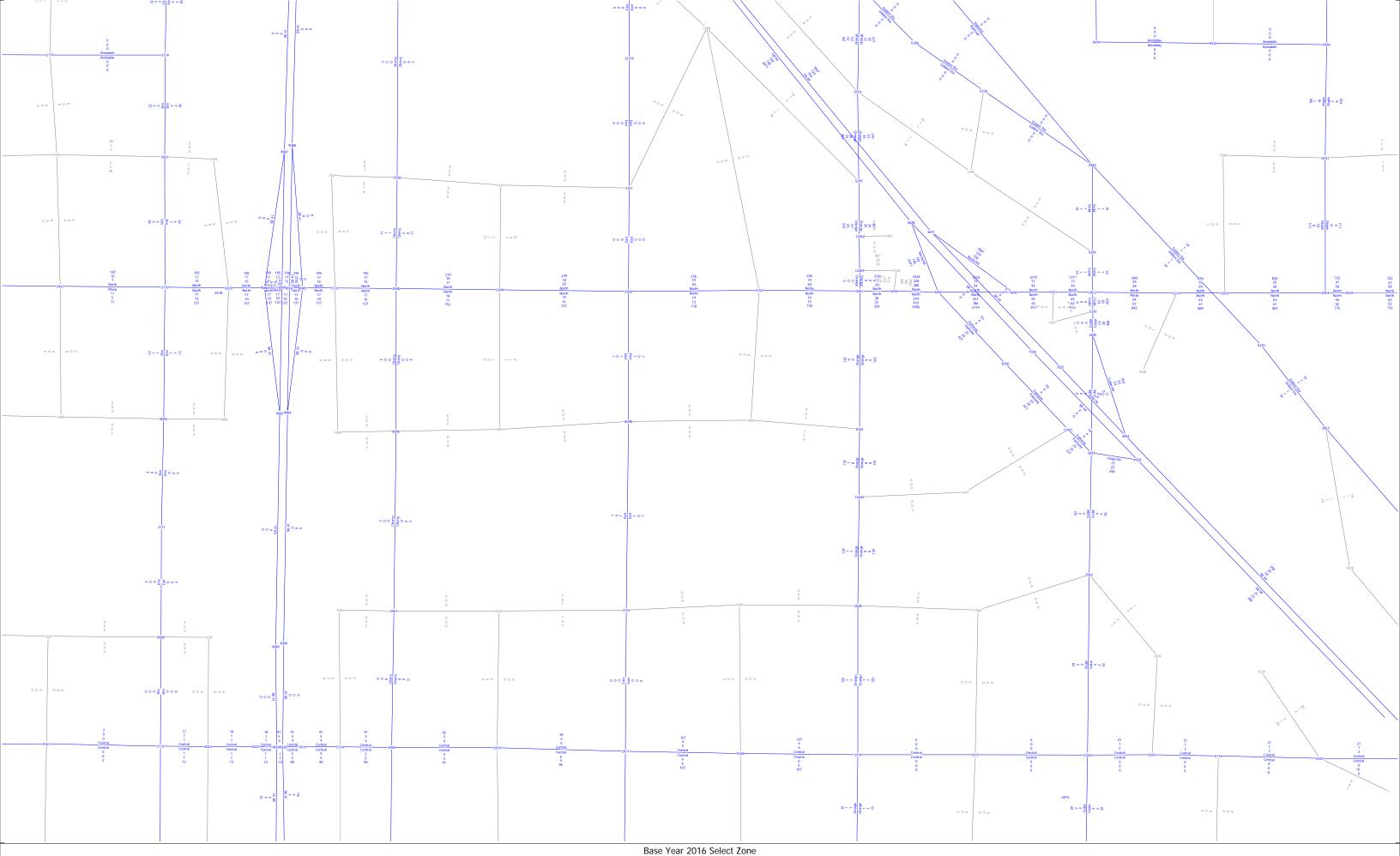

1300 E. Shaw Ave., Ste. 103

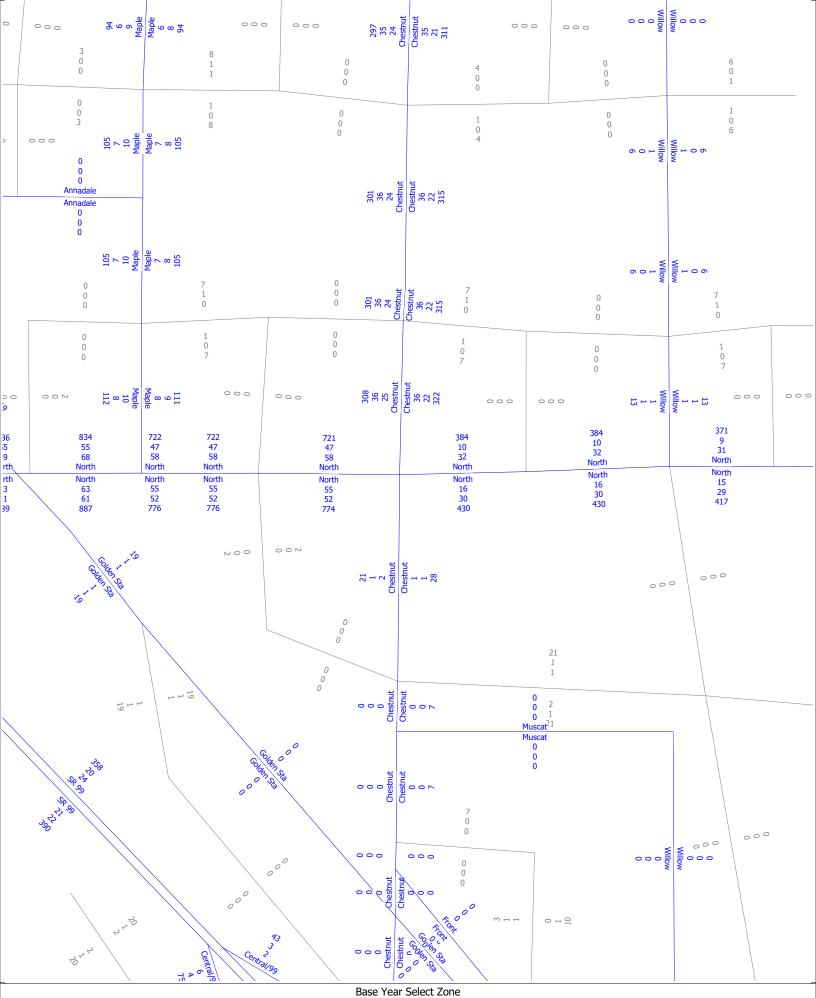

1300 E. Shaw Ave., Ste. 103

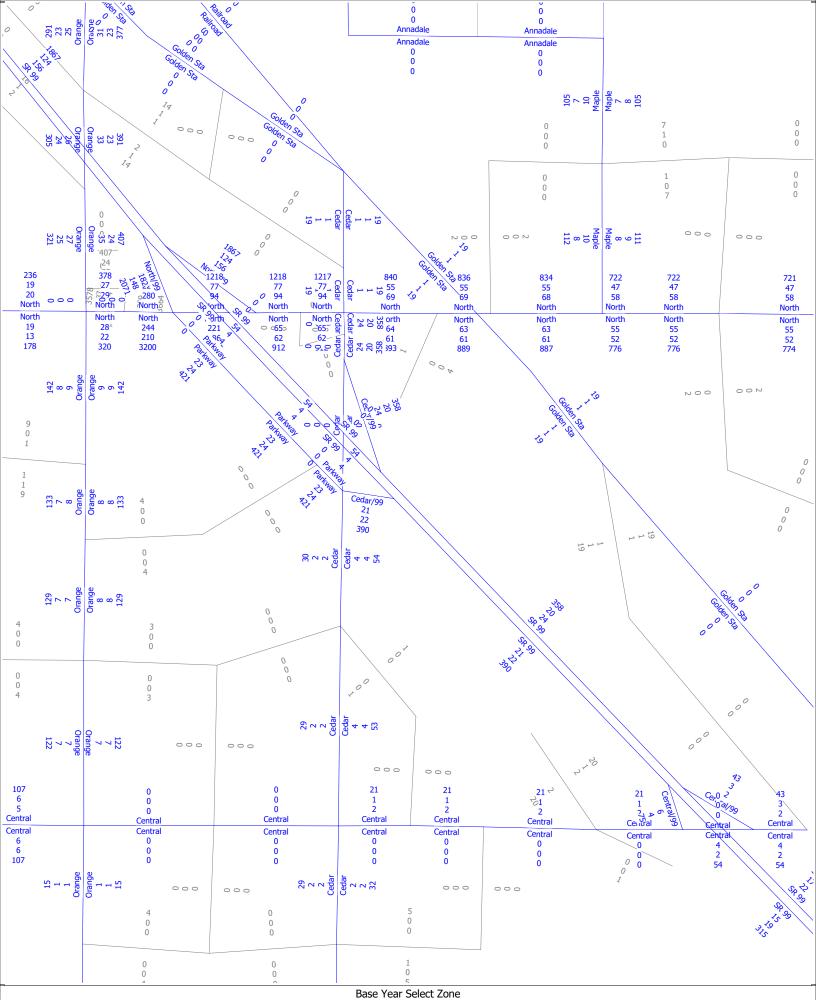


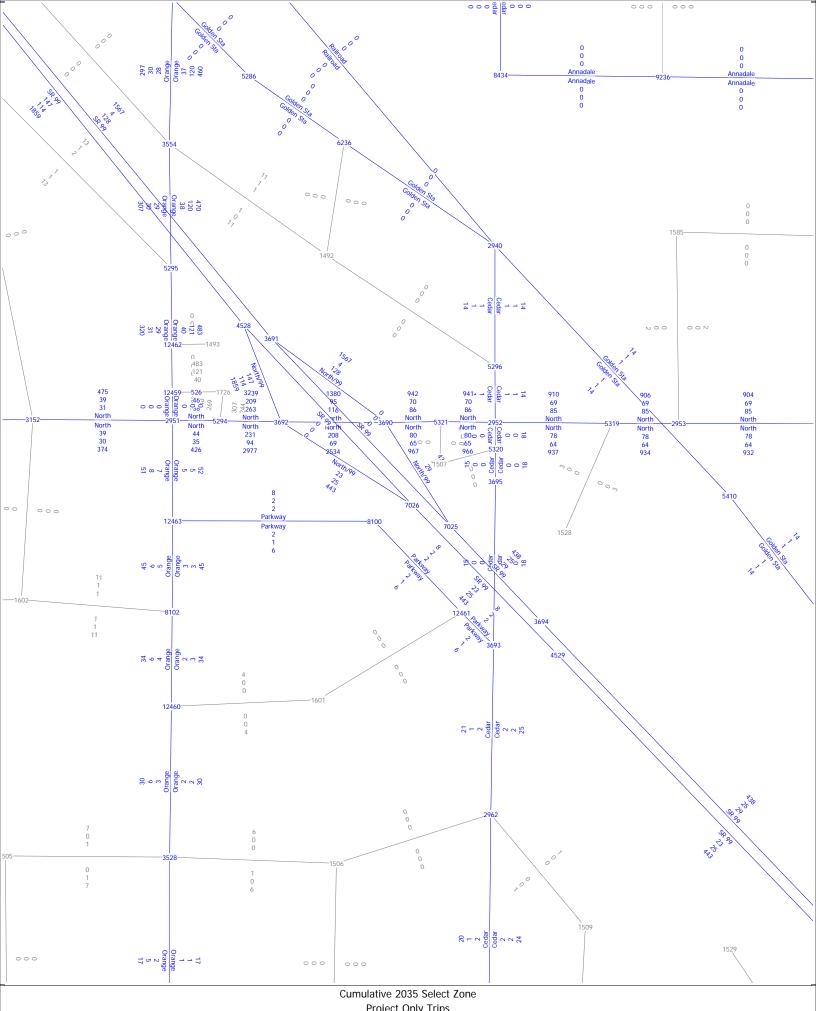


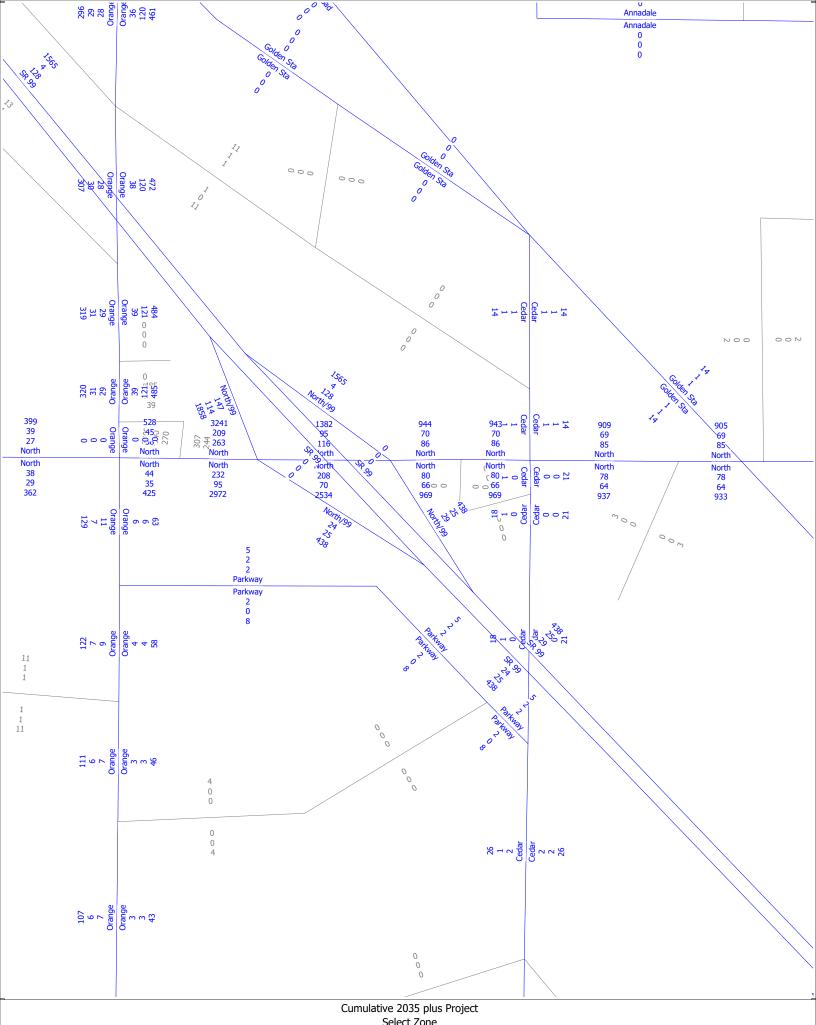
Base Year 2016 AM, PM, and Daily Volumes

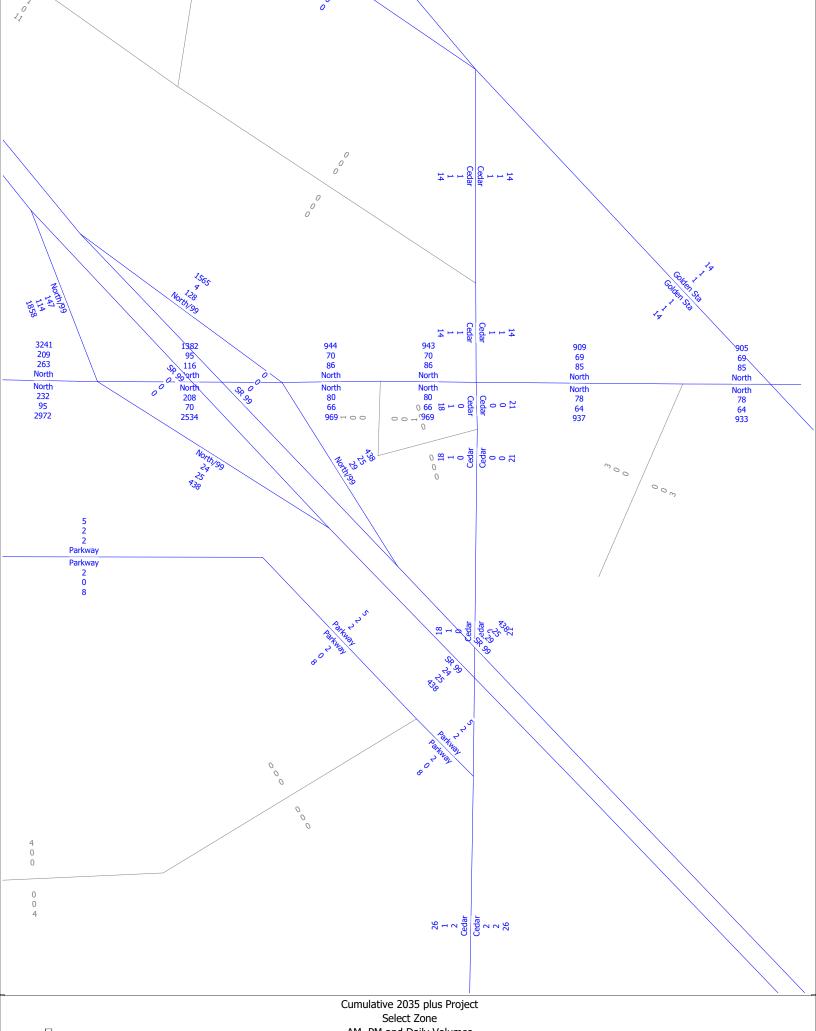


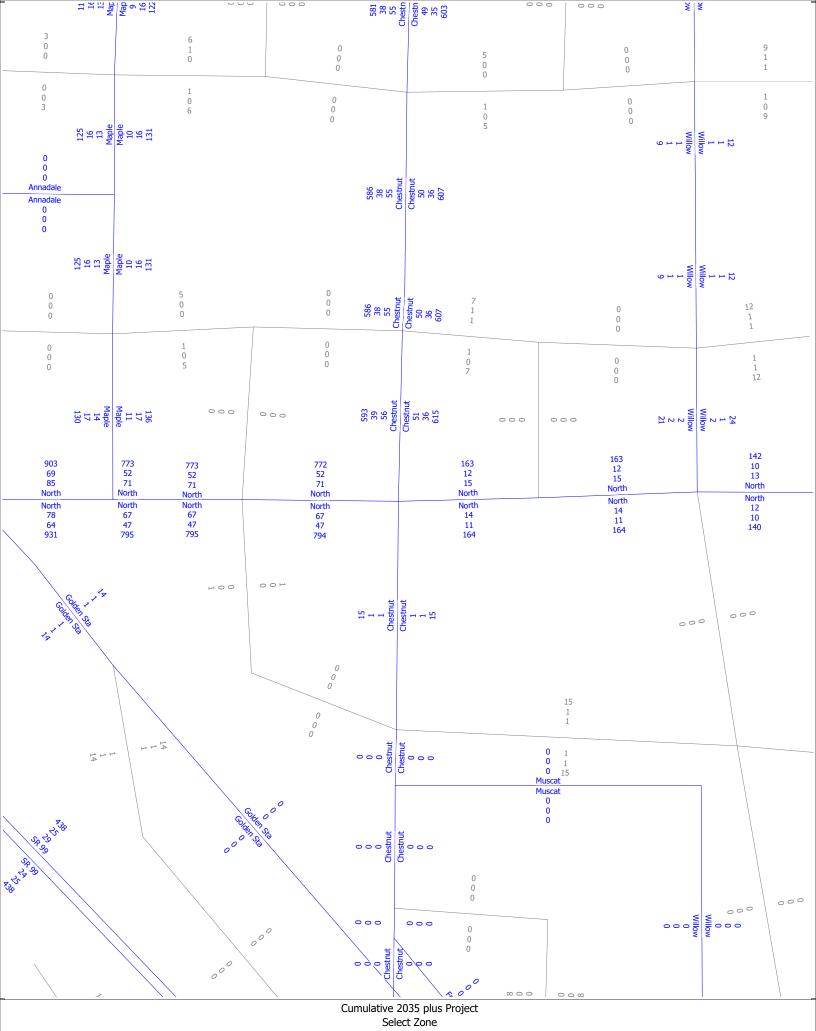

Project Only Trips
AM, PM, and Daily

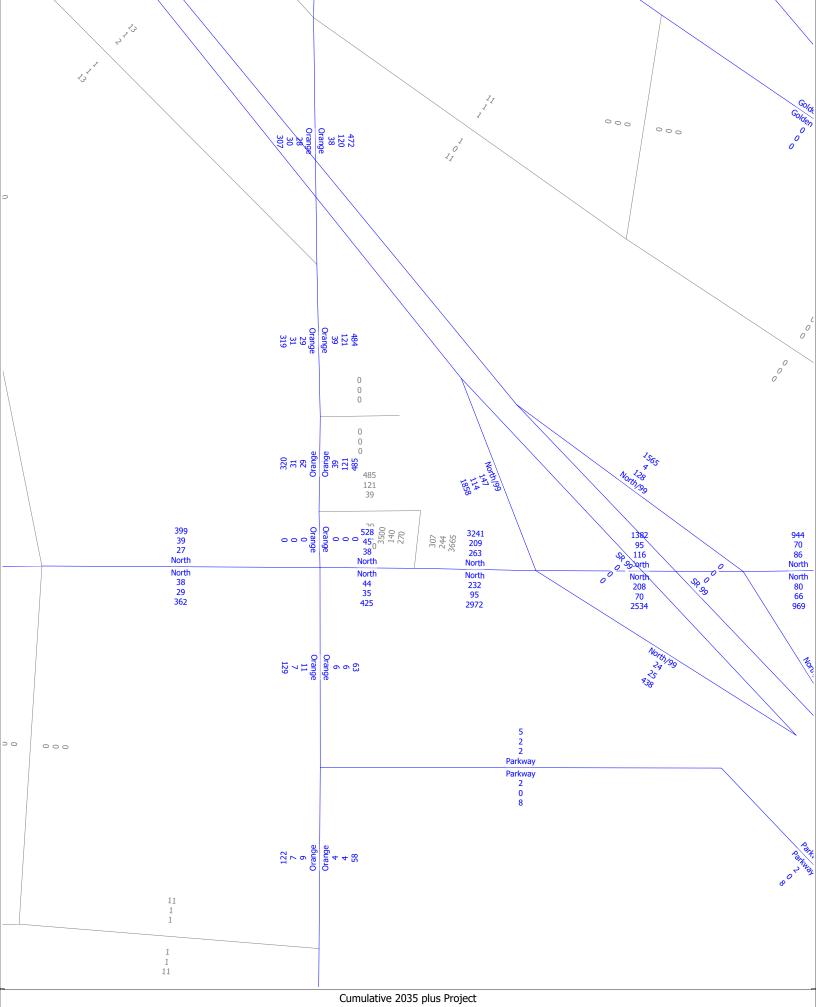

AM, PM, and Daily


Base Year 2016 Select Zone Project Only Trips AM, PM and Daily Volumes

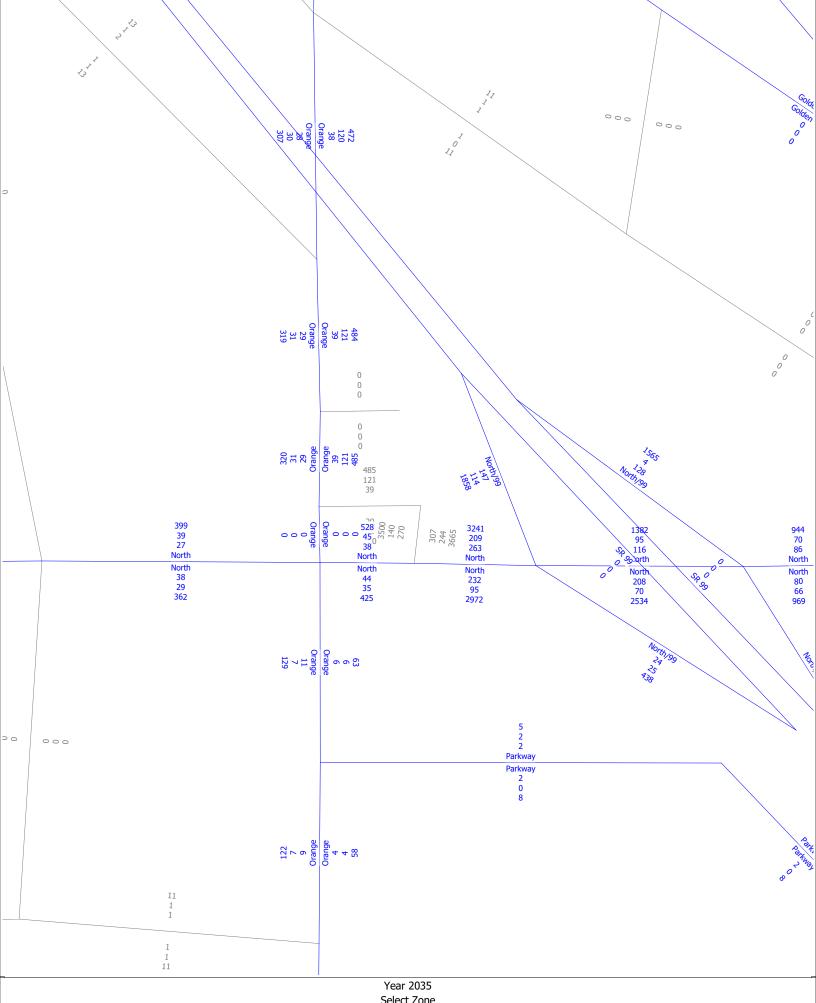

Base Year Select Zor Project Only Trips AM, PM, and Daily

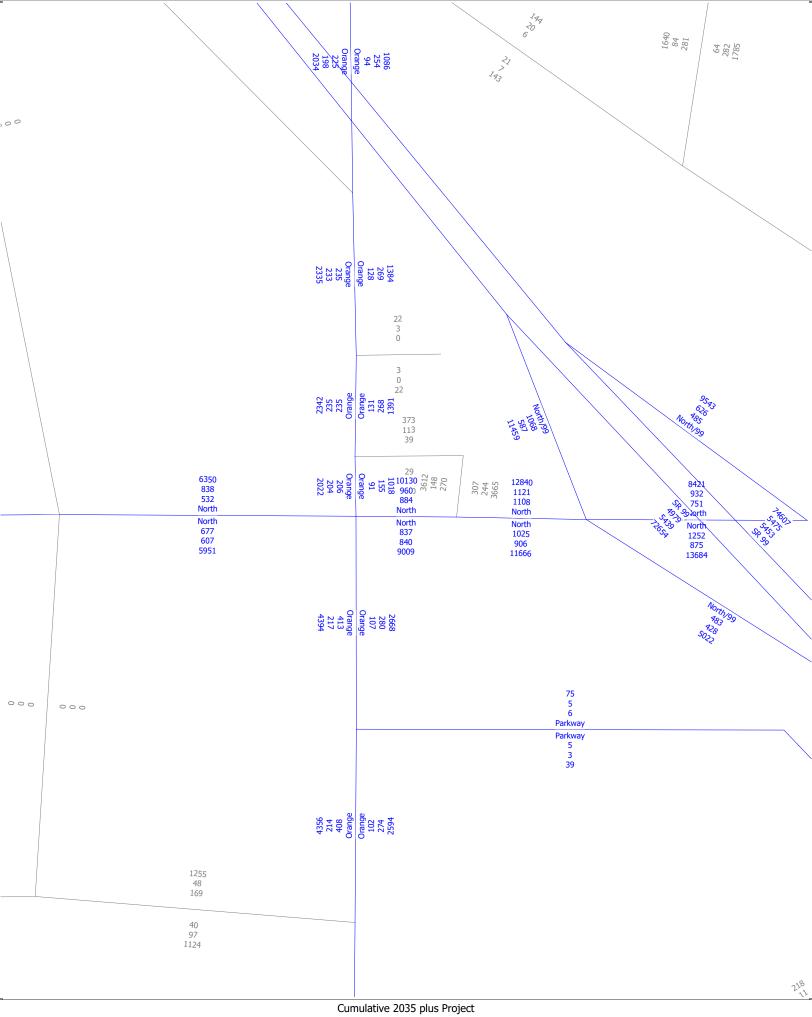


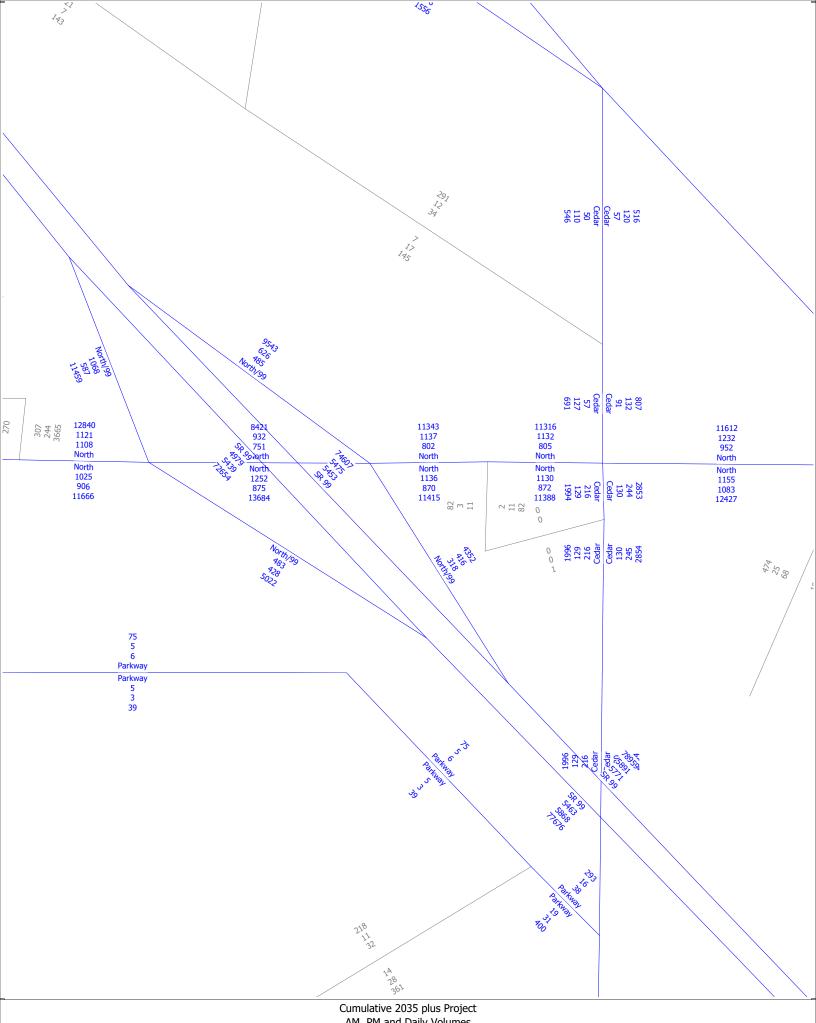

Project Only Trips AM, PM, and Daily

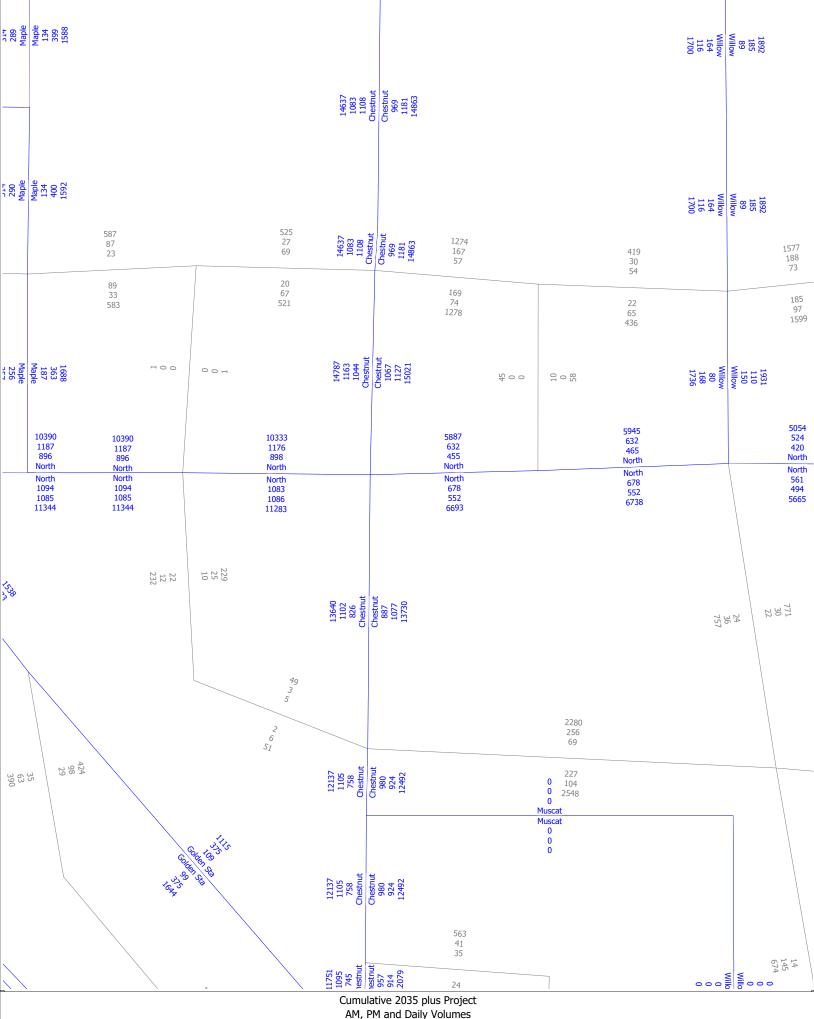


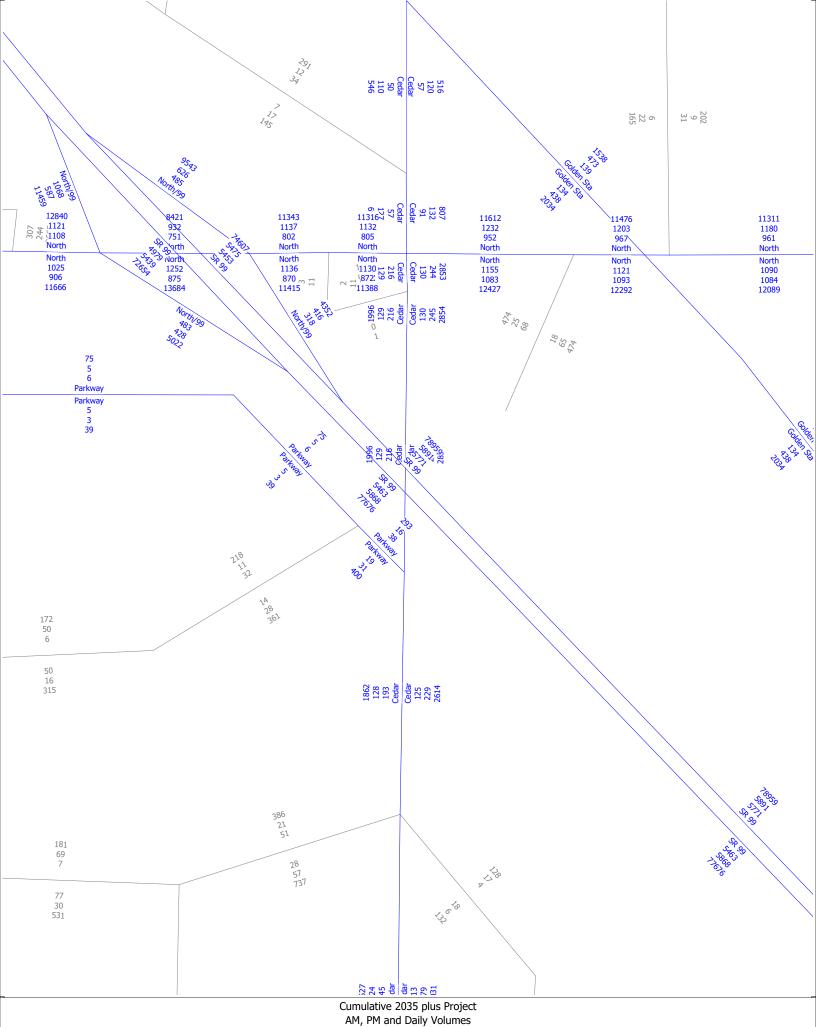
Cumulative 2035 Select Zone Project Only Trips AM, PM and Daily

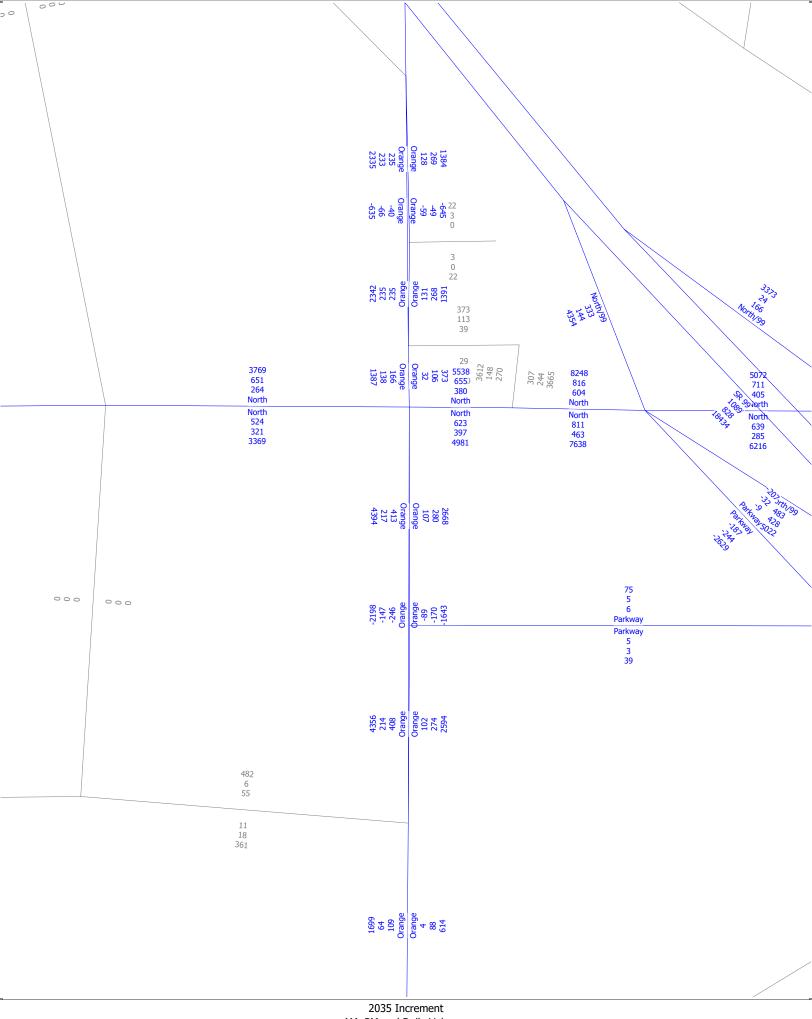


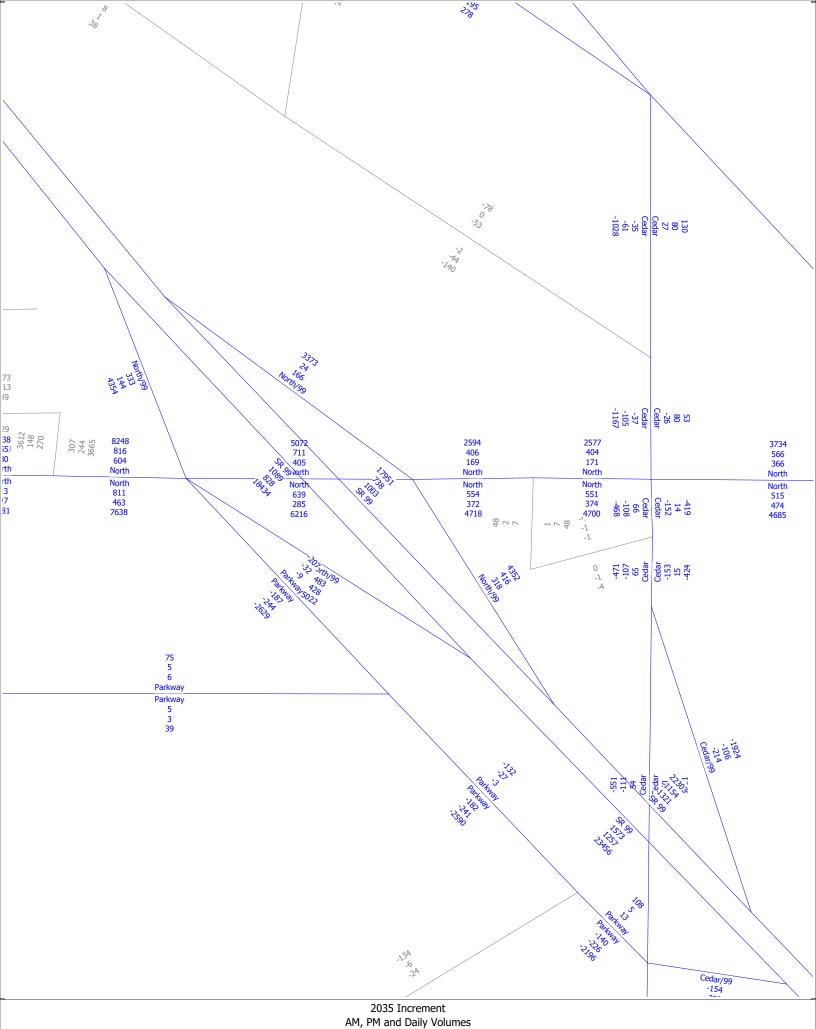


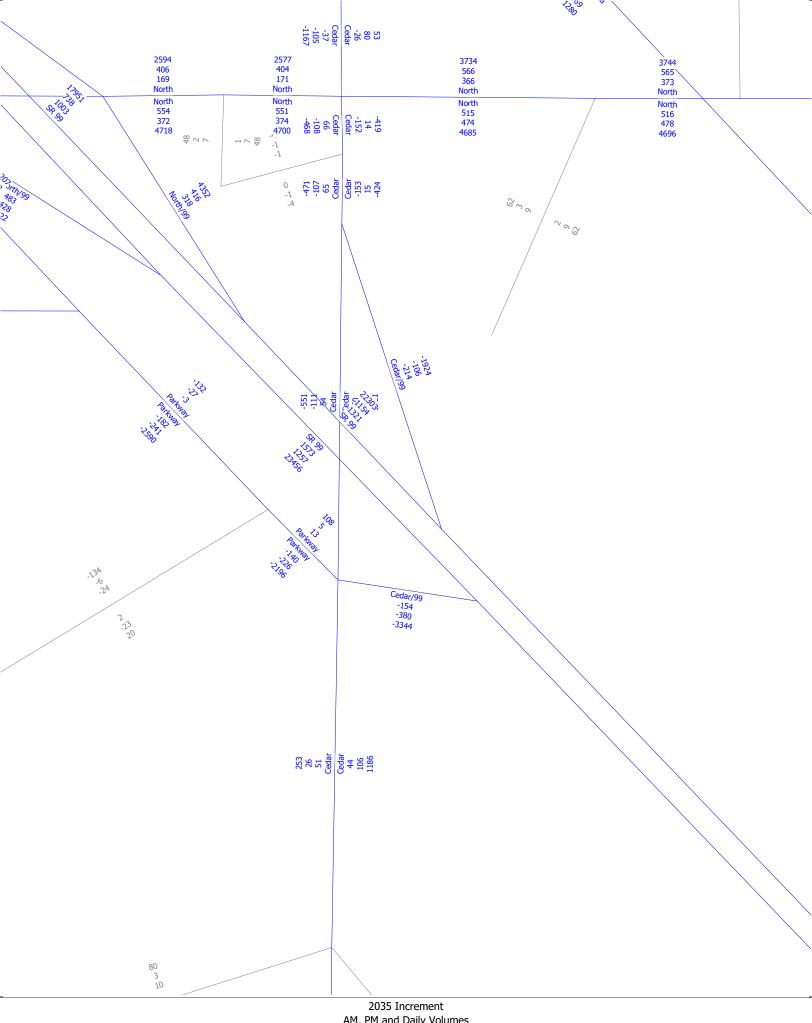


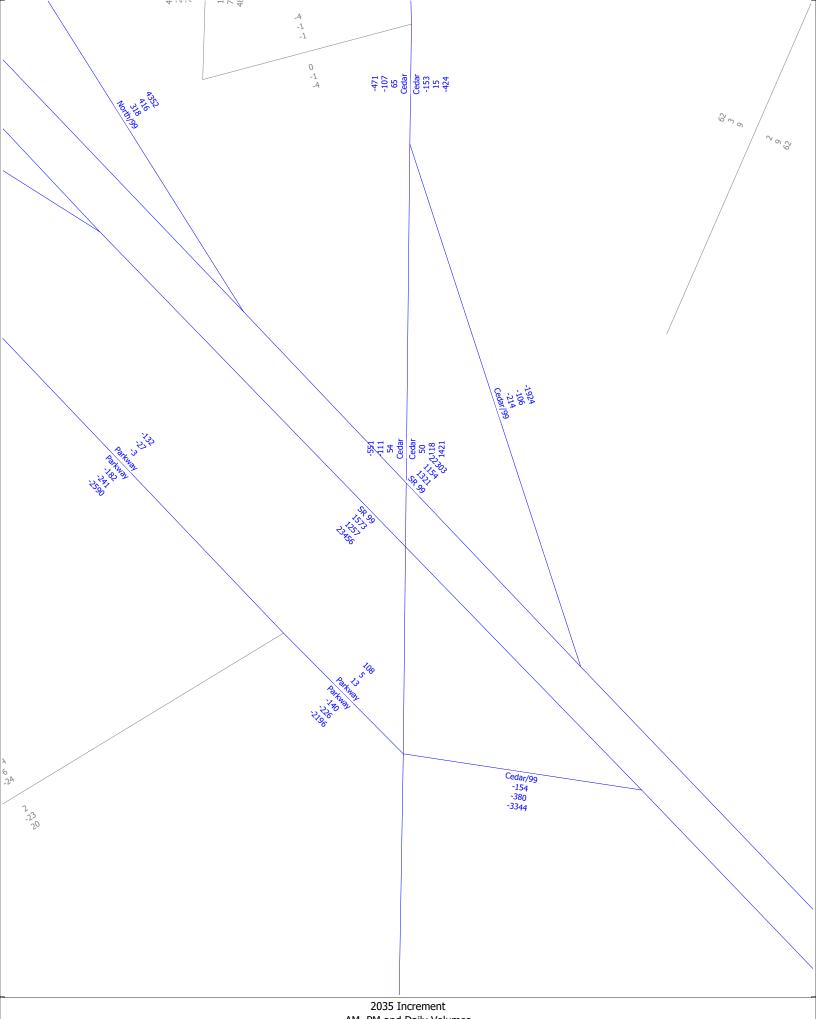

AM, PM and Daily Volumes

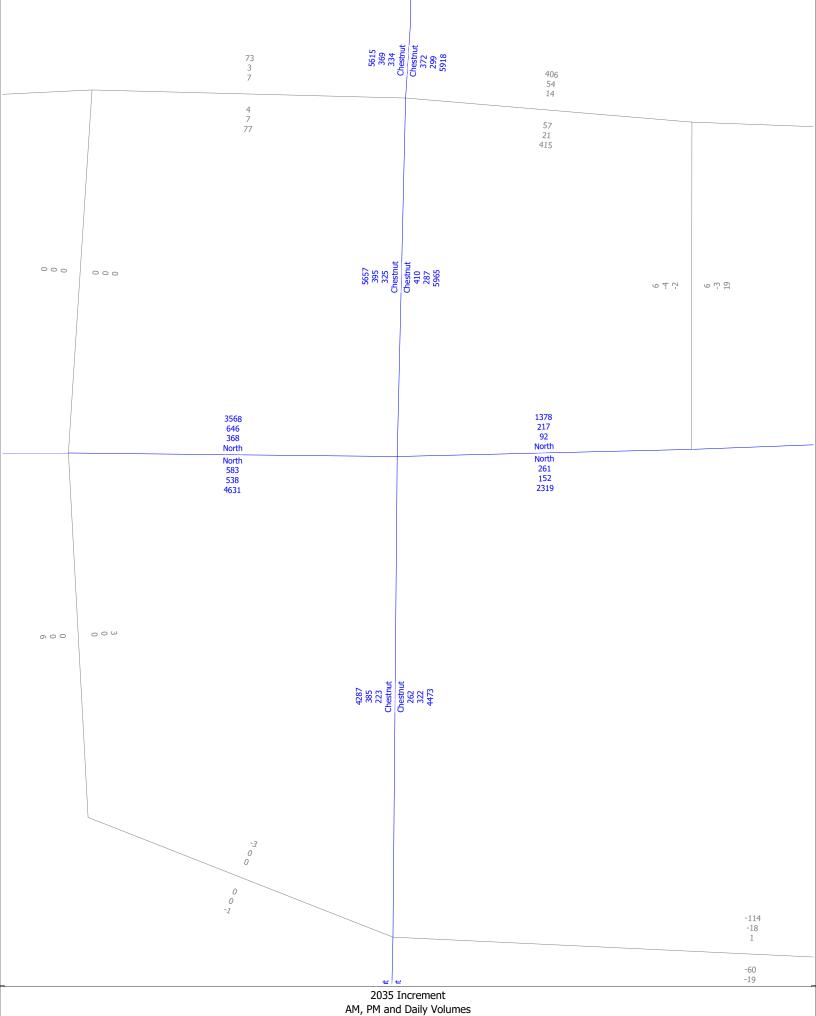

Year 2035
Select Zone
AM, PM and Daily Volumes






AM, PM and Daily Volumes




AM, PM and Daily Volumes

Appendix D: Methodology

Levels of Service Methodology

The description and procedures for calculating capacity and level of service (LOS) are found in the Transportation Research Board, Highway Capacity Manual (HCM). The HCM 2010 represents the research on capacity and quality of service for transportation facilities.

Quality of service requires quantitative measures to characterize operational conditions within a traffic stream. Level of service is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience.

Six levels of service are defined for each type of facility that has analysis procedures available. Letters designate each level of service (LOS), from A to F, with LOS A representing the best operating conditions and LOS F the worst. Each LOS represents a range of operating conditions and the driver's perception of these conditions. Safety is not included in the measures that establish a LOS.

Urban Streets (Automobile Mode)

The term "urban streets" refers to urban arterials and collectors, including those in downtown areas. Arterial streets are roads that primarily serve longer through trips. However, providing access to abutting commercial and residential land uses is also an important function of arterials. Collector streets provide both land access and traffic circulation within residential, commercial and industrial areas. Their access function is more important than that of arterials, and unlike arterials their operation is not always dominated by traffic signals. Downtown streets are signalized facilities that often resemble arterials. They not only move through traffic but also provide access to local businesses for passenger cars, transit buses, and trucks. Pedestrian conflicts and lane obstructions created by stopping or standing taxicabs, buses, trucks and parking vehicles that cause turbulence in the traffic flow are typical of downtown streets.

Flow Characteristics

The speed of vehicles on urban streets is influenced by three main factors, street environment, interaction among vehicles and traffic control.

The street environment includes the geometric characteristics of the facility, the character of roadside activity, and adjacent land uses. Thus, the environment reflects the number and width of lanes, type of median, driveway/access point density, spacing between signalized intersections, existence of parking, level of pedestrian and bicyclist activity and speed limit.

The interaction among vehicles is determined by traffic density, the proportion of trucks and buses, and turning movements. This interaction affects the operation of vehicles at intersections and, to a lesser extent, between signals.

Traffic controls (including signals and signs) forces a portion of all vehicles to slow or stop. The delays and speed changes caused by traffic control devices reduce vehicle speeds; however, such controls are needed to establish right-of-way.

www.JLBtraffic.com

Page | D-1

Levels of Service (automobile Mode)

The average travel speed for through vehicles along an urban street is the determinant of the operating level of service (LOS). The travel speed along a segment, section or entire length of an urban street is dependent on the running speed between signalized intersections and the amount of control delay incurred at signalized intersections.

LOS A describes primarily free-flow operation. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Control delay at signalized intersections is minimal. Travel speeds exceed 85 of the base free flow speed (FFS).

LOS B describes reasonably unimpeded operation. The ability to maneuver within the traffic stream is only slightly restricted and control delay at the boundary intersections is not significant. The travel speed is between 67 and 85 percent of the base FFS.

LOS C describes stable operations. The ability to maneuver and change lanes in midblock location may be more restricted than at LOS B. Longer queues at the boundary intersections may contribute to lower travel speeds. The travel speed is between 50 and 67 percent of the base FFS.

LOS D indicates a less stable condition in which small increases in flow may cause substantial increases in delay and decreases in travel speed. This operation may be due to adverse signal progression, high volumes, inappropriate signal timing, at the boundary intersections. The travel speed is between 40 and 50 percent of the base FFS.

LOS E is characterized unstable operation and significant delay. Such operations may be due to some combination of adverse progression, high volume, and inappropriate signal timing at the boundary intersections. The travel speed is between 30 and 40 percent of the base FFS.

LOS F is characterized by street flow at extremely low speed. Congestion is likely occurring at the boundary intersections, as indicated by high delay and extensive queuing. The travel speed is 30 percent or less of the base FFS.

Table A-1: Urban Street Levels of Service (Automobile Mode)

Travel Speed as a Percentage of Base Free-Flow Speed (%)	LOS by Critical Volume-to-	·Capacity Ratio ^a
	≤1.0	>1.0
>85	А	F
>67 to 85	В	F
>50 to 67	С	F
>40 to 50	D	F
>30 to 40	E	F
≤30	F	F

a = The Critical volume-to-capacity ratio is based on consideration of the through movement-to-capacity ratio at each boundary intersection in the subject direction of travel. The critical volume-to-capacity ratio is the largest ratio of those considered. Source: Highway Capacity Manual 2010, Exhibit 16-4. Urban Street LOS Criteria (Automobile Mode)

www.JLBtraffic.com

Intersection Levels of Service

One of the more important elements limiting, and often interrupting the flow of traffic on a highway is the intersection. Flow on an interrupted facility is usually dominated by points of fixed operation such as traffic signals, stop and yield signs.

Signalized Intersections – Performance Measures

For signalized intersections the performance measures include automobile volume-to-capacity ratio, automobile delay, queue storage length, ratio of pedestrian delay, pedestrian circulation area, pedestrian perception score, bicycle delay, and bicycle perception score. LOS is also considered a performance measure. For the automobile mode average control delay per vehicle per approach is determined for the peak hour. A weighted average of control delay per vehicle is then determined for the intersection. A LOS designation is given to the weighted average control delay to better describe the level of operation. A description of LOS for signalized intersections is found in Table A-2.

www.JLBtraffic.com

Table A-2: Signalized Intersection Level of Service Description (Automobile Mode)

Level of Service	Description	Average Control Delay (seconds per vehicle)
А	Operations with a control delay of 10 seconds/vehicle or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when volume-to-capacity ratio is and either progression is exceptionally favorable or the cycle length is very short. If it's due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.	≤10
В	Operations with control delay between 10.1 to 20.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.	>10.0 to 20.0
С	Operations with average control delays between 20.1 to 35.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.	>20 to 35
D	Operations with control delay between 35.1 to 55.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop, and i ndividual cycle failures are noticeable.	>35 to 55
E	Operations with control delay between 55.1 to 80.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.	>55 to 80
F	Operations with unacceptable control delay exceeding 80.0 seconds/vehicle and a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.	>80

Source: Highway Capacity Manual 2010

Unsignalized Intersections

The HCM 2010 procedures use control delay as a measure of effectiveness to determine level of service. Delay is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, traffic and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, i. e., in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Control delay is the increased time of travel for a vehicle approaching and passing through an unsignalized intersection, compared with a free-flow vehicle if it were not required to slow or stop at the intersection.

www.JLBtraffic.com

All-Way Stop Controlled Intersections

All-way stop controlled intersections is a form of traffic controls in which all approaches to an intersection are required to stop. Similar to signalized intersections, at all-way stop controlled intersections the average control delay per vehicle per approach is determined for the peak hour. A weighted average of control delay per vehicle is then determined for the intersection as a whole. In other words the delay measured for all-way stop controlled intersections is a measure of the average delay for all vehicles passing through the intersection during the peak hour. A LOS designation is given to the weighted average control delay to better describe the level of operation.

Two-Way Stop Controlled Intersections

Two-way stop controlled (TWSC) intersections in which stop signs are used to assign the right-of-way, are the most prevalent type of intersection in the United States. At TWSC intersections the stop-controlled approaches are referred as the minor street approaches and can be either public streets or private driveways. The approaches that are not controlled by stop signs are referred to as the major street approaches.

The capacity of movements subject to delay are determined using the "critical gap" method of capacity analysis. Expected average control delay based on movement volume and movement capacity is calculated. A LOS for TWSC intersection is determined by the computed or measured control delay for each minor movement. LOS is not defined for the intersection as a whole for three main reasons: (a) major-street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles at the typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay from all vehicles; and (c) the resulting low delay can mask important LOS deficiencies for minor movements. Table A-3 provides a description of LOS at unsignalized intersections.

Table A-3: Unsignalized Intersection Level of Service Description (Automobile Mode)

Control Delay (seconds per vehicle)	LOS by Volume	-to-Capacity Ratio
	v/c <u><</u> 1.0	v/c > 1.0
≤10	А	F
>10 to 15	В	F
>15 to 25	С	F
>25 to 35	D	F
>35 to 50	Е	F
>50	F	F

Source: HCM 2010 Exhibit 19-1.

www.JLBtraffic.com

Page | D-5

Appendix E: Existing Traffic Conditions

	ၨ	→	•	•	←	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	7	^	7	ሻ	↑	7	7	↑	7
Traffic Volume (veh/h)	27	146	4	28	311	48	4	12	27	20	13	67
Future Volume (veh/h)	27	146	4	28	311	48	4	12	27	20	13	67
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624
Adj Flow Rate, veh/h	30	162	4	31	346	53	4	13	30	22	14	74
Adj No. of Lanes	1	1	1	1	2	1	1	1	1	1	1	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	17	17	17	17	17	17	17	17	17	17	17	17
Cap, veh/h	43	405	344	44	772	345	6	174	148	33	202	171
Arrive On Green	0.03	0.25	0.25	0.03	0.25	0.25	0.00	0.11	0.11	0.02	0.12	0.12
Sat Flow, veh/h	1547	1624	1380	1547	3085	1380	1547	1624	1380	1547	1624	1380
Grp Volume(v), veh/h	30	162	4	31	346	53	4	13	30	22	14	74
Grp Sat Flow(s),veh/h/ln	1547	1624	1380	1547	1543	1380	1547	1624	1380	1547	1624	1380
Q Serve(g_s), s	0.6	2.8	0.1	0.7	3.1	1.0	0.1	0.2	0.7	0.5	0.3	1.6
Cycle Q Clear(g_c), s	0.6	2.8	0.1	0.7	3.1	1.0	0.1	0.2	0.7	0.5	0.3	1.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	43	405	344	44	772	345	6	174	148	33	202	171
V/C Ratio(X)	0.70	0.40	0.01	0.70	0.45	0.15	0.62	0.07	0.20	0.68	0.07	0.43
Avail Cap(c_a), veh/h	270	1552	1319	177	2762	1236	177	1762	1498	177	1762	1498
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	16.0	10.4	9.4	16.0	10.5	9.7	16.5	13.3	13.5	16.1	12.8	13.4
Incr Delay (d2), s/veh	18.7	0.6	0.0	18.5	0.4	0.2	70.9	0.2	0.7	21.8	0.1	1.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	1.3	0.0	0.5	1.3	0.4	0.2	0.1	0.3	0.4	0.1	0.7
LnGrp Delay(d),s/veh	34.7	11.0	9.4	34.4	10.9	9.9	87.4	13.5	14.2	37.9	13.0	15.2
LnGrp LOS	С	В	A	С	В	A	F	В	В	D	В	<u>B</u>
Approach Vol, veh/h		196			430			47			110	
Approach Delay, s/veh		14.6			12.5			20.2			19.4	
Approach LOS		В			В			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	4.9	9.6	5.1	13.6	4.3	10.1	5.1	13.6				
Change Period (Y+Rc), s	* 4.2	6.0	* 4.2	5.3	* 4.2	6.0	* 4.2	5.3				
Max Green Setting (Gmax), s	* 3.8	36.0	* 3.8	31.7	* 3.8	36.0	* 5.8	29.7				
Max Q Clear Time (g_c+I1), s	2.5	2.7	2.7	4.8	2.1	3.6	2.6	5.1				
Green Ext Time (p_c), s	0.0	0.4	0.0	3.2	0.0	0.4	0.0	3.2				
Intersection Summary												
HCM 2010 Ctrl Delay			14.5									
HCM 2010 LOS			В									
Notes												

Intersection												
Int Delay, s/veh	9.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7		4		ሻ		7		सी	7
Traffic Vol, veh/h	0	120	79	4	247	0	9	0	17	153	109	123
Future Vol, veh/h	0	120	79	4	247	0	9	0	17	153	109	123
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	60	-	-	-	0	-	45	-	-	55
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	27	27	27	27	0	27	0	27	27	27	27
Mvmt Flow	0	133	88	4	274	0	10	0	19	170	121	137
Major/Minor M	lajor1		1	Major2		ľ	Minor1		- 1	Minor2		
Conflicting Flow All	-	0	-	133	0	0	477	-	133	416	416	274
Stage 1	-	-	-	-	-	-	133	-	-	283	283	-
Stage 2	-	-	-	-	-	-	344	-	-	133	133	-
Critical Hdwy	-	-	-	4.37	-	-	7.37	-	6.47	7.37	6.77	6.47
Critical Hdwy Stg 1	-	-	-	-	-	-	6.37	-	-	6.37	5.77	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.37	-	-	6.37	5.77	-
Follow-up Hdwy	-	-	-	2.443	-	-	3.743	-	3.543	3.743	4.243	3.543
Pot Cap-1 Maneuver	0	-	0	1311	-	0	459	0	854	506	491	708
Stage 1	0	-	0	-	-	0	814	0	-	673	634	-
Stage 2	0	-	0	-	-	0	622	0	-	814	741	-
Platoon blocked, %		-			-							
Mov Cap-1 Maneuver	-	-	-	1311	-	-	299	-	854	493	489	708
Mov Cap-2 Maneuver	-	-	-	-	-	-	299	-	-	493	489	-
Stage 1	-	-	-	-	-	-	814	-	-	673	631	-
Stage 2	-	-	-	-	-	-	404	-	-	796	741	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			12.1			18.9		
HCM LOS							В			С		
Minor Lane/Major Mvmt	N	IBLn1 N	JRI n2	EBT	WBL	\M/DT (SBLn1:	SBI n2				
	I\	299										
Capacity (veh/h) HCM Lane V/C Ratio		0.033	854		1311 0.003	-	491 0.593	708				
		17.5	9.3		7.8		22.5	11.3				
HCM Control Delay (s) HCM Lane LOS		17.5 C	9.3 A	-	7.8 A	0 A	22.5 C	11.3 B				
HCM 95th %tile Q(veh)		0.1	0.1	-	0	- A	3.8	0.7				
HOW FOUT MURE Q(VEH)		0.1	U. I	-	U	-	3.0	0.7				

Baseline
JLB Traffic Engineering, Inc.
Synchro 10 Report
Page 1

	*	→	←	*_	\	4
Movement	EBL	EBT	WBT	WBR	SEL	SER
Lane Configurations	LUL	4	<u>₩</u>	7	OLL	O_IX
Traffic Volume (veh/h)	45	230	269	85	0	0
Future Volume (Veh/h)	45	230	269	85	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	48	245	286	90	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			947			
pX, platoon unblocked						
vC, conflicting volume	286				627	286
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	286				627	286
tC, single (s)	4.4				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.5				3.5	3.3
p0 queue free %	96				100	100
cM capacity (veh/h)	1122				431	758
Direction, Lane #	EB 1	WB 1	WB 2			
Volume Total	293	286	90			
Volume Left	48	0	0			
Volume Right	0	0	90			
cSH	1122	1700	1700			
Volume to Capacity	0.04	0.17	0.05			
Queue Length 95th (ft)	3	0	0			
Control Delay (s)	1.7	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	1.7	0.0				
Approach LOS						
Intersection Summary						
Average Delay			0.8			
Intersection Capacity Utili	ization		35.4%	IC	U Level o	f Service
Analysis Period (min)			15			

	۶	→	•	√	•	•	•	†	~	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	₽		7	↑	7	ሻ	†	7
Traffic Volume (veh/h)	33	190	24	28	186	27	251	29	40	8	25	15
Future Volume (veh/h)	33	190	24	28	186	27	251	29	40	8	25	15
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1439	1439	1439	1439	1439	1900	1439	1439	1439	1439	1439	1439
Adj Flow Rate, veh/h	41	235	30	35	230	33	310	36	49	10	31	19
Adj No. of Lanes	1	1	1	1	1	0	1	1	1	1	1	1
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, %	32	32	32	32	32	32	32	32	32	32	32	32
Cap, veh/h	59	380	323	52	319	46	357	477	405	18	120	102
Arrive On Green	0.04	0.26	0.26	0.04	0.26	0.26	0.26	0.33	0.33	0.01	0.08	0.08
Sat Flow, veh/h	1371	1439	1223	1371	1232	177	1371	1439	1223	1371	1439	1223
Grp Volume(v), veh/h	41	235	30	35	0	263	310	36	49	10	31	19
Grp Sat Flow(s),veh/h/ln	1371	1439	1223	1371	0	1408	1371	1439	1223	1371	1439	1223
Q Serve(g_s), s	1.6	7.5	1.0	1.3	0.0	8.9	11.4	0.9	1.5	0.4	1.1	0.8
Cycle Q Clear(g_c), s	1.6	7.5	1.0	1.3	0.0	8.9	11.4	0.9	1.5	0.4	1.1	0.8
Prop In Lane	1.00		1.00	1.00		0.13	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	59	380	323	52	0	365	357	477	405	18	120	102
V/C Ratio(X)	0.70	0.62	0.09	0.67	0.00	0.72	0.87	0.08	0.12	0.56	0.26	0.19
Avail Cap(c_a), veh/h	156	838	712	130	0	793	490	1254	1066	130	876	745
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.8	17.0	14.6	25.0	0.0	17.7	18.6	12.1	12.3	25.8	22.6	22.4
Incr Delay (d2), s/veh	13.9	1.6	0.1	13.9	0.0	2.7	11.8	0.1	0.1	25.2	1.1	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.0	3.2	0.3	0.7	0.0	3.7	5.4	0.4	0.5	0.3	0.5	0.3
LnGrp Delay(d),s/veh	38.7	18.7	14.7	38.8	0.0	20.4	30.4	12.1	12.4	51.0	23.7	23.3
LnGrp LOS	D	В	В	D		С	С	В	В	D	С	С
Approach Vol, veh/h		306			298			395			60	
Approach Delay, s/veh		21.0			22.6			26.5			28.1	
Approach LOS		С			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	4.9	22.3	6.2	19.2	17.9	9.3	6.5	18.9				
Change Period (Y+Rc), s	* 4.2	4.9	* 4.2	5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), s	* 5	45.8	* 5	30.6	* 19	32.0	* 6	29.6				
Max Q Clear Time (g_c+I1), s	2.4	3.5	3.3	9.5	13.4	3.1	3.6	10.9				
Green Ext Time (p_c), s	0.0	0.6	0.0	2.8	0.5	0.5	0.0	2.7				
Intersection Summary												
HCM 2010 Ctrl Delay			23.9									
HCM 2010 LOS			С									
Notes												

_	۶	→	•	•	←	•	•	†	/	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ħβ		ሻ	∱ }	
Traffic Volume (veh/h)	17	91	59	63	123	40	86	225	40	63	298	26
Future Volume (veh/h)	17	91	59	63	123	40	86	225	40	63	298	26
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	20	108	70	75	146	48	102	268	48	75	355	31
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	123	260	153	200	265	75	127	727	128	91	731	63
Arrive On Green	0.29	0.29	0.29	0.29	0.29	0.29	0.08	0.26	0.26	0.05	0.23	0.23
Sat Flow, veh/h	69	912	536	280	928	263	1675	2840	502	1675	3112	270
Grp Volume(v), veh/h	198	0	0	269	0	0	102	156	160	75	190	196
Grp Sat Flow(s), veh/h/li		0	0	1471	0	0	1675	1671	1671	1675	1671	1712
Q Serve(g_s), s	0.0	0.0	0.0	1.8	0.0	0.0	2.3	2.9	3.0	1.7	3.8	3.8
Cycle Q Clear(g_c), s	4.0	0.0	0.0	5.8	0.0	0.0	2.3	2.9	3.0	1.7	3.8	3.8
Prop In Lane	0.10		0.35	0.28		0.18	1.00		0.30	1.00		0.16
Lane Grp Cap(c), veh/h	536	0	0	540	0	0	127	428	428	91	392	402
V/C Ratio(X)	0.37	0.00	0.00	0.50	0.00	0.00	0.80	0.37	0.37	0.82	0.48	0.49
Avail Cap(c_a), veh/h	1384	0	0	1342	0	0	428	1090	1090	297	946	969
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		0.0	0.0	11.8	0.0	0.0	17.4	11.7	11.7	17.9	12.7	12.7
Incr Delay (d2), s/veh	0.4	0.0	0.0	0.7	0.0	0.0	11.1	0.5	0.5	16.2	0.9	0.9
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.0	0.0	2.6	0.0	0.0	1.4	1.4	1.4	1.2	1.8	1.9
LnGrp Delay(d),s/veh	11.7	0.0	0.0	12.5	0.0	0.0	28.5	12.2	12.3	34.2	13.6	13.6
LnGrp LOS	В			В			С	В	В	С	В	В
Approach Vol, veh/h		198			269			418			461	
Approach Delay, s/veh		11.7			12.5			16.2			16.9	
Approach LOS		В			В			В			В	
	1		2	1		L	7					
Timer	1	2	3	4	5	6	1	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc)		15.8		16.2	7.1	15.0		16.2				
Change Period (Y+Rc),		* 6 * 25		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gm		* 25		33.0	* 9.8	21.7		33.0				
Max Q Clear Time (g_c		5.0		6.0	4.3	5.8		7.8				
Green Ext Time (p_c), s	5 0.0	3.4		2.8	0.1	3.2		2.7				
Intersection Summary												
HCM 2010 Ctrl Delay			15.1									
HCM 2010 LOS			В									
Notes												

Baseline
JLB Traffic Engineering, Inc.

Intersection						
Int Delay, s/veh	5.9					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	†			↑	ሻ	7
Traffic Vol, veh/h	92	0	0	85	28	195
Future Vol, veh/h	92	0	0	85	28	195
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Yield
Storage Length	_	-	_	-	85	0
Veh in Median Storage		_	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	33	0	0	33	33	33
Mvmt Flow	103	0	0	96	31	219
IVIVIIIL FIUW	103	U	U	90	31	219
Major/Minor	Major1	N	/lajor2	N	/linor1	
Conflicting Flow All	0	-	-	-	199	103
Stage 1	-	-	-	-	103	-
Stage 2	-	-	-	-	96	-
Critical Hdwy	-	-	-	-	6.73	6.53
Critical Hdwy Stg 1	-	-	-	-	5.73	-
Critical Hdwy Stg 2	-	-	-	-	5.73	-
Follow-up Hdwy	_	_	_	-	3.797	3.597
Pot Cap-1 Maneuver	_	0	0	_	725	874
Stage 1	_	0	0	_	849	-
Stage 2	_	0	0	_	856	_
Platoon blocked, %	_	U	U	_	030	_
Mov Cap-1 Maneuver	-			-	725	874
	-	-	-		725	0/4
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-	-	849	-
Stage 2	-	-	-	-	856	-
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		10.5	
HCM LOS					В	
TIOWI LOO					U	
Minor Lane/Major Mvn	nt	NBTN	WLn1N		SBT	
Capacity (veh/h)		-	725	874	-	
HCM Lane V/C Ratio		-	0.043	0.251	-	
HCM Control Delay (s))	-	10.2	10.5	-	
HCM Lane LOS		-	В	В	-	
HCM 95th %tile Q(veh	1)	-	0.1	1	-	
,						

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7					4			4	
Traffic Vol, veh/h	5	71	88	0	0	0	16	97	26	40	60	13
Future Vol, veh/h	5	71	88	0	0	0	16	97	26	40	60	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	100	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	16979	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	50	50	50	50	50	50	50	50	50	50	50	50
Mvmt Flow	5	77	96	0	0	0	17	105	28	43	65	14
Major/Minor N	/linor2					ľ	Major1		N	Major2		
Conflicting Flow All	292	292	65				65	0	_	105	0	0
Stage 1	152	152	-				-	-	-	-	-	-
Stage 2	140	140	-				-	-	-	-	-	-
Critical Hdwy	6.9	7	6.7				4.6	-	-	4.6	-	-
Critical Hdwy Stg 1	5.9	6	-				-	-	-	-	-	-
Critical Hdwy Stg 2	5.9	6	-				-	-	-	-	-	-
Follow-up Hdwy	3.95	4.45	3.75				2.65	-	-	2.65	-	-
Pot Cap-1 Maneuver	609	546	880				1280	-	0	1234	-	0
Stage 1	771	689	-				-	-	0	-	-	0
Stage 2	782	698	-				-	-	0	-	-	0
Platoon blocked, %								-			-	
Mov Cap-1 Maneuver	579	0	880				1280	-	-	1234	-	-
Mov Cap-2 Maneuver	579	0	-				-	-	-	-	-	-
Stage 1	743	0	-				-	-	-	-	-	-
Stage 2	771	0	-				-	-	-	-	-	-
, i												
Approach	EB						NB			SB		
HCM Control Delay, s	10.9						1.1			3.2		
HCM LOS	В											
Minor Lane/Major Mvm	t	NBL	NBT I	EBLn1 I	EBLn2	SBL	SBT					
Capacity (veh/h)		1280	-	579	880	1234	-					
HCM Lane V/C Ratio		0.014	-	0.143			-					
HCM Control Delay (s)		7.9	0	12.3	9.6	8	0					
HCM Lane LOS		А	Α	В	Α	Α	Α					
HCM 95th %tile Q(veh)		0	-	0.5	0.4	0.1	-					
,												

Baseline
JLB Traffic Engineering, Inc.
Synchro 10 Report
Page 1

	۶	→	•	√	←	•	•	†	~	>		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	7	^	7	7	↑	7	7	†	7
Traffic Volume (veh/h)	51	336	9	36	227	18	13	37	59	66	23	47
Future Volume (veh/h)	51	336	9	36	227	18	13	37	59	66	23	47
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1638	1638	1638	1638	1638	1638	1638	1638	1638	1638	1638	1638
Adj Flow Rate, veh/h	57	378	10	40	255	20	15	42	66	74	26	53
Adj No. of Lanes	1	1	1	1	2	1	1	1	1	1	1	1
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	16	16	16	16	16	16	16	16	16	16	16	16
Cap, veh/h	69	548	466	53	1009	452	23	177	150	86	243	206
Arrive On Green	0.04	0.33	0.33	0.03	0.32	0.32	0.01	0.11	0.11	0.05	0.15	0.15
Sat Flow, veh/h	1560	1638	1392	1560	3112	1392	1560	1638	1392	1560	1638	1392
Grp Volume(v), veh/h	57	378	10	40	255	20	15	42	66	74	26	53
Grp Sat Flow(s),veh/h/ln	1560	1638	1392	1560	1556	1392	1560	1638	1392	1560	1638	1392
Q Serve(g_s), s	1.5	8.4	0.2	1.1	2.5	0.4	0.4	1.0	1.9	2.0	0.6	1.4
Cycle Q Clear(g_c), s	1.5	8.4	0.2	1.1	2.5	0.4	0.4	1.0	1.9	2.0	0.6	1.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	69	548	466	53	1009	452	23	177	150	86	243	206
V/C Ratio(X)	0.83	0.69	0.02	0.76	0.25	0.04	0.66	0.24	0.44	0.86	0.11	0.26
Avail Cap(c_a), veh/h	215	1197	1018	141	2127	951	141	1404	1193	178	1443	1227
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	19.9	12.1	9.4	20.1	10.4	9.7	20.6	17.2	17.5	19.7	15.5	15.8
Incr Delay (d2), s/veh	21.7	1.6	0.0	19.8	0.1	0.0	28.3	0.7	2.0	21.4	0.2	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	4.0	0.1	0.7	1.1	0.2	0.3	0.5	0.8	1.4	0.3	0.6
LnGrp Delay(d),s/veh	41.7	13.6	9.4	39.9	10.6	9.8	48.9	17.8	19.6	41.1	15.7	16.5
LnGrp LOS	D	В	A	D	В	A	D	В	В	D	В	В
Approach Vol, veh/h		445			315			123			153	
Approach Delay, s/veh		17.1			14.2			22.6			28.3	
Approach LOS		В			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.5	10.5	5.6	19.4	4.8	12.2	6.0	18.9				
Change Period (Y+Rc), s	* 4.2	6.0	* 4.2	5.3	* 4.2	6.0	* 4.2	5.3				
Max Green Setting (Gmax), s	* 4.8	36.0	* 3.8	30.7	* 3.8	37.0	* 5.8	28.7				
Max Q Clear Time (g_c+I1), s	4.0	3.9	3.1	10.4	2.4	3.4	3.5	4.5				
Green Ext Time (p_c), s	0.0	0.7	0.0	3.7	0.0	0.7	0.0	3.8				
Intersection Summary												
HCM 2010 Ctrl Delay			18.5									
HCM 2010 LOS			В									
Notes												

Baseline
JLB Traffic Engineering, Inc.

Intersection												
Int Delay, s/veh	5.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•	7		4		7		7		र्स	7
Traffic Vol, veh/h	0	291	184	4	201	0	8	0	28	101	56	89
Future Vol, veh/h	0	291	184	4	201	0	8	0	28	101	56	89
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	60	-	-	-	0	-	45	-	-	55
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	0	22	22	22	22	0	22	0	22	22	22	22
Mvmt Flow	0	310	196	4	214	0	9	0	30	107	60	95
Major/Minor M	lajor1		N	Major2			Minor1		ľ	Minor2		
Conflicting Flow All	-	0	-	310	0	0	562	-	310	532	532	214
Stage 1	-	-	-	-	-	-	310	-	-	222	222	-
Stage 2	-	-	-	-	-	-	252	-	-	310	310	-
Critical Hdwy	-	-	-	4.32	-	-	7.32	-	6.42	7.32	6.72	6.42
Critical Hdwy Stg 1	-	-	-	-	-	-	6.32	-	-	6.32	5.72	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.32	-	-	6.32	5.72	-
Follow-up Hdwy	-	-	-	2.398	-	-	3.698	-	3.498	3.698	4.198	3.498
Pot Cap-1 Maneuver	0	-	0	1145	-	0	409	0	686	428	426	778
Stage 1	0	-	0	-	-	0	660	0	-	737	684	-
Stage 2	0	-	0	-	-	0	710	0	-	660	624	-
Platoon blocked, %		-			-							
Mov Cap-1 Maneuver	-	-	-	1145	-	-	320	-	686	408	424	778
Mov Cap-2 Maneuver	-	-	-	-	-	-	320	-	-	408	424	-
Stage 1	-	-	-	-	-	-	660	-	-	737	681	-
Stage 2	-	-	-	-	-	-	567	-	-	631	624	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.2			11.9			16.2		
HCM LOS							В			С		
Minor Lane/Major Mvmt		NBLn1 N	VBLn2	EBT	WBL	WBT :	SBLn1:	SBLn2				
Capacity (veh/h)		320	686	-	1145	-	414	778				
HCM Lane V/C Ratio		0.027			0.004	_	0.403					
HCM Control Delay (s)		16.6	10.5	-	8.2	0	19.5	10.3				
HCM Lane LOS		С	В	-	Α	A	С	В				
HCM 95th %tile Q(veh)		0.1	0.1	-	0	-	1.9	0.4				

Baseline
JLB Traffic Engineering, Inc.

Synchro 9 Report
Page 3

	*	→	•	*_	\	4
Movement	EBL	EBT	WBT	WBR	SEL	SER
Lane Configurations		4	<u> </u>	7		
Traffic Volume (veh/h)	185	230	209	293	0	0
Future Volume (Veh/h)	185	230	209	293	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	203	253	230	322	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			947			
pX, platoon unblocked						
vC, conflicting volume	230				889	230
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	230				889	230
tC, single (s)	4.2				6.5	6.4
tC, 2 stage (s)						
tF (s)	2.3				3.6	3.4
p0 queue free %	84				100	100
cM capacity (veh/h)	1265				250	778
Direction, Lane #	EB 1	WB 1	WB 2			
Volume Total	456	230	322			
Volume Left	203	0	0			
Volume Right	0	0	322			
cSH	1265	1700	1700			
Volume to Capacity	0.16	0.14	0.19			
Queue Length 95th (ft)	14	0	0			
Control Delay (s)	4.6	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	4.6	0.0				
Approach LOS						
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utiliz	zation		47.1%	IC	U Level o	f Service
Analysis Period (min)			15	,		

	→	`	•	←	•	•	†	<u></u>	\		1
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	7	ሻ	4		ሻ	↑	7	ኘ	<u> </u>	7
Traffic Volume (veh/h) 10	239	5	36	305	7	214	37	52	10	14	29
Future Volume (veh/h) 10	239	5	36	305	7	214	37	52	10	14	29
Number 7	4	14	3	8	18	5	2	12	10	6	16
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00	U	1.00	1.00	U	1.00	1.00	U	1.00	1.00	U	1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 1557	1557	1557	1557	1557	1900	1557	1557	1557	1557	1557	1557
Adj Flow Rate, veh/h 11	263	5	40	335	8	235	41	57	11	1557	32
Adj No. of Lanes 1	203	1	1	1	0	233	1	1	1	13	1
Peak Hour Factor 0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, % 22	22	22	22	22	22	22	22	22	22	22	22
3 .	435	370	64	467	11	277	413	351	21	145	123
Cap, veh/h 21 Arrive On Green 0.01	0.28	0.28	0.04	0.31	0.31	0.19	0.27	0.27	0.01	0.09	0.09
	1557	1324	1483		36		1557	1324		1557	1324
Sat Flow, veh/h 1483				1515		1483			1483		
Grp Volume(v), veh/h 11	263	5	40	0	343	235	41	57	11	15	32
Grp Sat Flow(s), veh/h/ln1483	1557	1324	1483	0	1551	1483	1557	1324	1483	1557	1324
Q Serve(g_s), s 0.3	6.8	0.1	1.2	0.0	9.2	7.2	0.9	1.5	0.3	0.4	1.1
Cycle Q Clear(g_c), s 0.3	6.8	0.1	1.2	0.0	9.2	7.2	0.9	1.5	0.3	0.4	1.1
Prop In Lane 1.00	425	1.00	1.00	0	0.02 479	1.00	110	1.00	1.00	145	1.00
Lane Grp Cap(c), veh/h 21	435	370		0		277	413	351	21	145	123
V/C Ratio(X) 0.52	0.60	0.01	0.62	0.00	0.72	0.85	0.10	0.16	0.52	0.10	0.26
Avail Cap(c_a), veh/h 159	1019	866	159	1.00	1015	279	1192	1013	159	1066	906
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 22.9	14.6	12.2	22.0 9.5	0.0	14.4	18.4	13.0	13.2	22.9 18.4	19.4	19.7
Incr Delay (d2), s/veh 18.4	1.4	0.0		0.0	2.0	21.0	0.1	0.2		0.3	1.1
Initial Q Delay(d3), s/veh 0.0	0.0		0.0	0.0	4.2	0.0	0.0		0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr0.2 LnGrp Delay(d),s/veh 41.3	16.0	0.0	31.4	0.0	16.4	4.6 39.4	0.4	0.6	41.3	19.7	20.8
1 3 1 7	16.0 B	12.2 B	31.4 C	0.0	16.4 B		13.1 B	13.4 B		19.7 B	20.8 C
		D	C	202	D	D		D	D		C
Approach Polay, shiph	279			383			333			58	
Approach LOS	16.9			18.0			31.7			24.4	
Approach LOS	В			В			С			С	
Timer 1	2	3	4	5	6	7	8				
Assigned Phs 1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s4.9	17.3	6.2	18.4	12.9	9.2	4.9	19.7				
Change Period (Y+Rc), \$ 4.2	4.9	* 4.2	5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), 5	35.8	* 5	30.6	* 8.8	32.0	* 5	30.6				
Max Q Clear Time (g_c+l12),3s	3.5	3.2	8.8	9.2	3.1	2.3	11.2				
Green Ext Time (p_c), s 0.0	0.6	0.0	3.4	0.0	0.5	0.0	3.2				
Intersection Summary											
HCM 2010 Ctrl Delay		22.4									
HCM 2010 LOS		С									
Notes											

Baseline
JLB Traffic Engineering, Inc.

		_		←	•	•	+	<u></u>	_	1	1
Mayamant		▼	WDI	WDT	WDD)	 NDT	/ NDD	CDI	CDT	CDD
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Values (value)	4	70	45	112	7/	ነ	†	40	ነ	†	20
Traffic Volume (veh/h) 22 Future Volume (veh/h) 22	125 125	79 79	45 45	113 113	76 76	68 68	503 503	48 48	29 29	323 323	20 20
` '	123	14	3		18	5		12	1	323	16
	0			8		0	2			0	
\ /!	U	1.00	1.00	U	1.00	1.00	U	1.00	1.00	U	1.00
Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h 23	130	82	47	118	79	71	524	50	30	336	21
Adj No. of Lanes 0	130	02	0	1	0	1	2	0	1	2	0
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, % 15	15	15	15	15	15	0.90	0.90	0.90	0.90	0.90	0.90
Cap, veh/h 120	246	142	156	224	129	87	959	91	45	913	57
Arrive On Green 0.27	0.27	0.27	0.27	0.27	0.27	0.05	0.31	0.31	0.03	0.29	0.29
Sat Flow, veh/h 71	916	529	173	835	483	1675	3085	294	1675	3197	199
Grp Volume(v), veh/h 235	0	0	244	033	0	71	283	291	30	175	182
Grp Sat Flow(s), veh/h/ln1516	0	0	1490	0	0	1675	1671	1707	1675	1671	1724
Q Serve(g_s), s 0.0	0.0	0.0	0.2	0.0	0.0	1.7	5.5	5.6	0.7	3.3	3.3
Cycle Q Clear(g_c), s 5.1	0.0	0.0	5.3	0.0	0.0	1.7	5.5	5.6	0.7	3.3	3.3
Prop In Lane 0.10	0.0	0.35	0.19	0.0	0.32	1.00	5.5	0.17	1.00	٥.٥	0.12
Lane Grp Cap(c), veh/h 507	0	0.55	509	0	0.32	87	519	531	45	477	492
V/C Ratio(X) 0.46	0.00	0.00	0.48	0.00	0.00	0.81	0.55	0.55	0.66	0.37	0.37
Avail Cap(c_a), veh/h 1349	0.00	0.00	1312	0.00	0.00	375	1104	1128	247	964	995
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 12.4	0.00	0.00	12.5	0.00	0.00	18.5	11.3	11.3	19.0	11.2	11.2
Incr Delay (d2), s/veh 0.7	0.0	0.0	0.7	0.0	0.0	16.2	0.9	0.9	15.4	0.5	0.5
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr2.2	0.0	0.0	2.3	0.0	0.0	1.1	2.6	2.7	0.5	1.6	1.6
LnGrp Delay(d),s/veh 13.1	0.0	0.0	13.2	0.0	0.0	34.7	12.1	12.2	34.3	11.7	11.7
LnGrp LOS B	0.0	0.0	13.2 B	0.0	0.0	C	В	В	C	В	В
Approach Vol, veh/h	235			244			645			387	
Approach Delay, s/veh	13.1			13.2			14.6			13.4	
Approach LOS	В			В			В			В	
										U	
Timer 1	2	3	4	5	6	7	8				
Assigned Phs 1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s5.3	18.2		15.9	6.3	17.2		15.9				
Change Period (Y+Rc), \$ 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax5, &	* 26		33.0	* 8.8	22.7		33.0				
Max Q Clear Time (g_c+l12),78			7.1	3.7	5.3		7.3				
Green Ext Time (p_c), s 0.0	4.7		2.8	0.0	4.6		2.8				
Intersection Summary											
HCM 2010 Ctrl Delay		13.8									
TION ZOTO OUT DOILLY		10.0									
HCM 2010 LOS		В									

Baseline
JLB Traffic Engineering, Inc.

Intersection						
Int Delay, s/veh	4.1					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	<u>↑</u>	NDIX	JDL	<u> </u>	ሻ	7
Traffic Vol, veh/h	135	0	0	58	11	124
Future Vol, veh/h	135	0	0	58	11	124
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	310p	Yield
Storage Length	_	-	_	-	85	0
Veh in Median Storage,	# 0	_	_	0	0	-
Grade, %	0	_	_	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	24	93	0	24	24	24
Mymt Flow	145	0	0	62	12	133
IVIVIIIL FIOW	143	U	U	02	12	133
Major/Minor M	1ajor1	١	Najor2	N	Minor1	
Conflicting Flow All	0	-	-	-	207	145
Stage 1	-	-	-	-	145	-
Stage 2	-	-	-	-	62	-
Critical Hdwy	-	-	-	-	6.64	6.44
Critical Hdwy Stg 1	-	-	-	-	5.64	-
Critical Hdwy Stg 2	-	-	-	-	5.64	-
Follow-up Hdwy	-	-	_	-		3.516
Pot Cap-1 Maneuver	-	0	0	_	734	847
Stage 1	_	0	0	_	831	-
Stage 2	_	0	0	_	908	_
Platoon blocked, %	_	Ū		_	700	
Mov Cap-1 Maneuver	_	-	_	_	734	847
Mov Cap-2 Maneuver	_	_	_	_	734	-
Stage 1	_	_	_	_	831	_
Stage 2	_	_		_	908	_
Stage 2	-		-		700	
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		10	
HCM LOS					В	
Minor Lang/Major Mumb		NIDTNI	WLn1N	1/1/1 52	CDT	
Minor Lane/Major Mvmt					SBT	
Capacity (veh/h)		-		847	-	
HCM Lane V/C Ratio			0.016		-	
HCM Control Delay (s)		-	10	10	-	
HCM Lane LOS HCM 95th %tile Q(veh)		-	В	В	-	
		-	0	0.6	-	

Baseline
JLB Traffic Engineering, Inc.
Synchro 9 Report
Page 8

Intersection												
Int Delay, s/veh	7.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7					4			4	
Traffic Vol, veh/h	3	177	65	0	0	0	8	118	23	34	34	2
Future Vol, veh/h	3	177	65	0	0	0	8	118	23	34	34	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	100	-	-	-	-	-	-	-	-	-
Veh in Median Storage	2,# -	0	-	-	16979	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	22	22	22	0	0	0	22	22	22	22	22	22
Mvmt Flow	3	188	69	0	0	0	9	126	24	36	36	2
Major/Minor I	Minor2					1	Major1		1	Major2		
Conflicting Flow All	252	252	36				36	0	-	126	0	0
Stage 1	109	109	-				-	-	-	-	-	-
Stage 2	143	143	-				-	-	-	-	-	-
Critical Hdwy	6.62	6.72	6.42				4.32	-	-	4.32	-	-
Critical Hdwy Stg 1	5.62	5.72	-				-	-	-	-	-	-
Critical Hdwy Stg 2	5.62	5.72	-				-	-	-	-	-	-
Follow-up Hdwy	3.698	4.198	3.498				2.398	-	-	2.398	-	-
Pot Cap-1 Maneuver	695	618	982				1455	-	0	1346	-	0
Stage 1	868	768	-				-	-	0	-	-	0
Stage 2	837	742	-				-	-	0	-	-	0
Platoon blocked, %								-			-	
Mov Cap-1 Maneuver	672	0	982				1455	-	-	1346	-	-
Mov Cap-2 Maneuver	672	0	-				-	-	-	-	-	-
Stage 1	845	0	-				-	-	-	-	-	-
Stage 2	831	0	-				-	-	-	-	-	-
Approach	EB						NB			SB		
HCM Control Delay, s	11.5						0.5			3.9		
HCM LOS	В						0.0			0.7		
Minor Lane/Major Mvm	nt	NBL	NDT	EBLn1 l	ERI n2	SBL	SBT					
	IL	1455		672	982	1346						
Capacity (veh/h) HCM Lane V/C Ratio		0.006	-	0.285		0.027	-					
HCM Control Delay (s)		7.5		12.5	8.9	7.7	-					
HCM Control Delay (s)			0 A	12.5 B	8.9 A	7.7 A	0					
HCM 95th %tile Q(veh)	١	A 0	A -	1.2	0.2	0.1	A -					
HOW FOUT TOUTE Q(VEH))	U	-	1.2	0.2	0.1	-					

Baseline
JLB Traffic Engineering, Inc.
Synchro 9 Report
Page 1

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	T	R	L	T	T	R	L	Т	R	L	T
Maximum Queue (ft)	65	170	16	120	143	138	65	58	45	60	44	45
Average Queue (ft)	18	41	2	24	44	34	15	3	11	10	13	8
95th Queue (ft)	49	112	9	77	94	91	48	25	35	34	32	31
Link Distance (ft)		2623	2623		289	289			1968			3215
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			185			100	150		150	100	
Storage Blk Time (%)						0						
Queuing Penalty (veh)						0						

Intersection: 1: Orange Avenue & North Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	65
Average Queue (ft)	15
95th Queue (ft)	41
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	130
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	NB	NB	SB
Directions Served	R	L	R	LT
Maximum Queue (ft)	101	14	41	170
Average Queue (ft)	15	4	11	87
95th Queue (ft)	60	13	34	135
Link Distance (ft)		2392		1072
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	60		45	
Storage Blk Time (%)	0		0	20
Queuing Penalty (veh)	0		0	25

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	WB
Directions Served	LT	T
Maximum Queue (ft)	77	40
Average Queue (ft)	11	1
95th Queue (ft)	42	13
Link Distance (ft)	730	367
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	R	L	T	R	
Maximum Queue (ft)	87	167	57	74	243	167	141	43	51	89	74	
Average Queue (ft)	33	54	14	30	81	111	23	12	8	28	14	
95th Queue (ft)	78	121	46	69	174	167	74	36	31	68	49	
Link Distance (ft)		473			5162		609			1319		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	150		100	150		180		180	155		355	
Storage Blk Time (%)		2			3	0						
Queuing Penalty (veh)		1			1	0						

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	LTR	LTR	L	T	TR	L	T	TR	
Maximum Queue (ft)	160	328	122	68	76	139	142	135	
Average Queue (ft)	52	115	57	30	38	45	48	63	
95th Queue (ft)	122	222	101	57	74	89	87	107	
Link Distance (ft)	5162	4573		5304	5304		5297	5297	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)			245			150			
Storage Blk Time (%)						0	0		
Queuing Penalty (veh)						0	0		

SimTraffic Report Baseline JLB Traffic Engineering, Inc. Page 2

Intersection: 7: Cedar Avenue & SR 99 NB Off-Ramp

Movement	NW
Directions Served	L
Maximum Queue (ft)	41
Average Queue (ft)	14
95th Queue (ft)	40
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	85
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 8: Cedar Avenue & Parkway Drive/SR 99 SB On-Ramp

Movement	EB	EB	NB	SB	
Directions Served	LT	R	LTR	LTR	
Maximum Queue (ft)	86	75	89	63	
Average Queue (ft)	44	17	9	9	
95th Queue (ft)	77	60	47	41	
Link Distance (ft)	2392		3449	1087	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		100			
Storage Blk Time (%)	0				
Queuing Penalty (veh)	0				

Network Summary

Network wide Queuing Penalty: 28

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	T	R	L	T	T	R	L	T	R	L	T
Maximum Queue (ft)	83	266	16	68	84	92	42	38	66	65	92	81
Average Queue (ft)	35	109	3	28	32	19	5	7	19	23	41	16
95th Queue (ft)	79	222	12	57	70	62	24	26	46	59	74	52
Link Distance (ft)		2623	2623		289	289			1968			3215
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			185			100	150		150	100	
Storage Blk Time (%)		0				0					1	0
Queuing Penalty (veh)		0				0					1	0

Intersection: 1: Orange Avenue & North Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	61
Average Queue (ft)	16
95th Queue (ft)	39
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	130
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	WB	NB	NB	SB	
Directions Served	R	LT	L	R	LT	
Maximum Queue (ft)	171	14	14	54	115	
Average Queue (ft)	22	1	2	19	65	
95th Queue (ft)	89	5	9	47	103	
Link Distance (ft)		730	2393		1072	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	60			45		
Storage Blk Time (%)	3			1	11	
Queuing Penalty (veh)	9			0	9	

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	WB
Directions Served	LT	R
Maximum Queue (ft)	113	86
Average Queue (ft)	50	16
95th Queue (ft)	95	60
Link Distance (ft)	730	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		85
Storage Blk Time (%)		0
Queuing Penalty (veh)		0

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	R	L	T	R	
Maximum Queue (ft)	88	145	16	67	195	198	60	53	70	55	88	
Average Queue (ft)	12	64	1	26	66	93	16	24	7	18	28	
95th Queue (ft)	46	122	7	58	129	169	45	50	32	51	63	
Link Distance (ft)		473			5162		609			1319		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	150		100	150		180		180	155		355	
Storage Blk Time (%)		2			1	1						
Queuing Penalty (veh)		0			0	0						

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	LTR	LTR	L	T	TR	L	T	TR	
Maximum Queue (ft)	166	188	94	180	160	74	118	121	
Average Queue (ft)	80	80	45	68	79	22	50	60	
95th Queue (ft)	128	146	76	123	133	56	91	106	
Link Distance (ft)	5162	4573		5304	5304		5297	5297	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)			245			150			
Storage Blk Time (%)									
Queuing Penalty (veh)									

SimTraffic Report Baseline JLB Traffic Engineering, Inc. Page 2

Intersection: 7: Cedar Avenue & SR 99 NB Off-Ramp

Movement	NW	NW
Directions Served	L	R
Maximum Queue (ft)	60	55
Average Queue (ft)	6	2
95th Queue (ft)	27	18
Link Distance (ft)		1717
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	85	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 8: Cedar Avenue & Parkway Drive/SR 99 SB On-Ramp

Movement	EB	EB	SB
Directions Served	LT	R	LTR
Maximum Queue (ft)	87	54	48
Average Queue (ft)	45	3	5
95th Queue (ft)	73	22	25
Link Distance (ft)	2393		1084
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		100	
Storage Blk Time (%)	0		
Queuing Penalty (veh)	0		

Network Summary

Network wide Queuing Penalty: 20

Appendix F: Existing plus Project Traffic Conditions

	•	-	•	F	•	—	•	•	†	/	>	ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ň	†	7		Ä	^	7	7	^	7	Ţ	†
Traffic Volume (vph)	46	146	4	49	35	330	49	4	21	27	215	15
Future Volume (vph)	46	146	4	49	35	330	49	4	21	27	215	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	1.00	1.00		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1543	1624	1380		1543	3085	1380	1543	1624	1380	1543	1624
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1543	1624	1380		1543	3085	1380	1543	1624	1380	1543	1624
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	51	162	4	54	39	367	54	4	23	30	239	17
RTOR Reduction (vph)	0	0	3	0	0	0	38	0	0	26	0	0
Lane Group Flow (vph)	51	162	1	0	93	367	16	4	23	4	239	17
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8		5	2		1	6
Permitted Phases			4				8			2		
Actuated Green, G (s)	3.1	16.1	16.1		5.5	18.5	18.5	0.4	7.5	7.5	14.5	21.6
Effective Green, g (s)	3.1	16.1	16.1		5.5	18.5	18.5	0.4	7.5	7.5	14.5	21.6
Actuated g/C Ratio	0.05	0.25	0.25		0.09	0.29	0.29	0.01	0.12	0.12	0.23	0.34
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	75	413	350		134	901	403	9	192	163	353	554
v/s Ratio Prot	0.03	0.10			c0.06	c0.12		0.00	c0.01		c0.15	0.01
v/s Ratio Perm			0.00				0.01			0.00		
v/c Ratio	0.68	0.39	0.00		0.69	0.41	0.04	0.44	0.12	0.02	0.68	0.03
Uniform Delay, d1	29.6	19.5	17.6		28.1	18.0	16.0	31.3	24.9	24.7	22.3	13.9
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	22.4	0.6	0.0		14.4	0.3	0.0	31.3	0.3	0.1	5.1	0.0
Delay (s)	52.0	20.2	17.6		42.5	18.3	16.1	62.6	25.2	24.7	27.3	13.9
Level of Service	D	С	В		D	В	В	Е	С	С	С	В
Approach Delay (s)		27.6				22.4			27.6			23.6
Approach LOS		С				С			С			С
Intersection Summary												
HCM 2000 Control Delay			24.0	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.49									
Actuated Cycle Length (s)			63.3	Sı	um of los	t time (s)			19.7			
Intersection Capacity Utiliza	ition		44.8%	IC	U Level	of Service)		Α			
Analysis Period (min)			15									

c Critical Lane Group

	-
Movement	SBR
Lane Configurations	7
Traffic Volume (vph)	69
Future Volume (vph)	69
Ideal Flow (vphpl)	1900
Total Lost time (s)	6.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1380
Flt Permitted	1.00
Satd. Flow (perm)	1380
Peak-hour factor, PHF	0.90
Adj. Flow (vph)	77
RTOR Reduction (vph)	51
Lane Group Flow (vph)	26
Turn Type	Perm
Protected Phases	L CIIII
Permitted Phases	6
Actuated Green, G (s)	21.6
Effective Green, g (s)	21.6
Actuated g/C Ratio	0.34
Clearance Time (s)	6.0
Vehicle Extension (s)	3.0
	470
Lane Grp Cap (vph) v/s Ratio Prot	4/0
v/s Ratio Prot v/s Ratio Perm	0.00
v/s Ratio Perm v/c Ratio	0.02 0.06
Uniform Delay, d1	14.0
Progression Factor	1.00
Incremental Delay, d2	0.0
Delay (s)	14.1
Level of Service	В
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Synchro 9 Report Baseline Page 2

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	EBL			WDK	SBL	
Lane Configurations			↑ ↑			7
Traffic Vol, veh/h	0	437	387	280	0	76
Future Vol, veh/h	0	437	387	280	0	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	_	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	17	17	3	0	3
		475		304		83
Mvmt Flow	0	4/5	421	304	0	83
Major/Minor N	Major1	ſ	Major2	Λ	Minor2	
Conflicting Flow All		0		0	-	363
Stage 1	_	-	_	-	-	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_		_		6.945
	-	-	-		-	0.743
Critical Edwy Stg 1			-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-		3.3285
Pot Cap-1 Maneuver	0	-	-	-	0	632
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	632
Mov Cap-2 Maneuver	-	_	_	_	_	-
Stage 1	-	_	_	_	_	_
Stage 2	_	_			_	
Staye 2	-	_	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		11.6	
HCM LOS					В	
110111 200						
Minor Lane/Major Mvm	nt	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		-	-	-	632	
HCM Lane V/C Ratio		-	-	-	0.131	
HCM Control Delay (s)		-	-		11.6	
HCM Lane LOS			_	_	В	
HCM 95th %tile Q(veh))		_	_	0.4	
TOW TOWN TOWN Q (VCII)	,				0.7	

Intersection												
Int Delay, s/veh	24.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1	7		र्स		*		7		र्स	7
Traffic Vol, veh/h	0	341	102	4	341	0	13	0	17	153	109	305
Future Vol, veh/h	0	341	102	4	341	0	13	0	17	153	109	305
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	60	-	-	-	0	-	45	-	-	55
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	27	27	27	27	0	27	0	27	27	27	27
Mvmt Flow	0	379	113	4	379	0	14	0	19	170	121	339
Major/Minor N	/lajor1			Major2		1	Minor1			Minor2		
Conflicting Flow All	-	0	-	379	0	0	827	-	379	767	767	379
Stage 1	-	-	-	-	-	-	379	-	-	388	388	-
Stage 2	-	-	-	-	-	-	448	-	-	379	379	-
Critical Hdwy	-	-	-	4.37	-	-	7.37	-	6.47	7.37	6.77	6.47
Critical Hdwy Stg 1	-	-	-	-	-	-	6.37	-	-	6.37	5.77	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.37	-	-	6.37	5.77	-
Follow-up Hdwy	-	-	-	2.443	-	-	3.743	-	3.543	3.743	4.243	3.543
Pot Cap-1 Maneuver	0	-	0	1055	-	0	264	0	616	290	305	616
Stage 1	0	-	0	-	-	0	595	0	-	588	568	-
Stage 2	0	-	0	-	-	0	545	0	-	595	573	-
Platoon blocked, %		-			-							
Mov Cap-1 Maneuver	-	-	-	1055	-	-	81	-	616	280	303	616
Mov Cap-2 Maneuver	-	-	-	-	-	-	81	-	-	280	303	-
Stage 1	-	-	-	-	-	-	595	-	-	588	565	-
Stage 2	-	-	-	-	-	-	192	-	-	577	573	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			31.8			53.1		
HCM LOS							D			F		
Minor Lane/Major Mvmi	t N	NBLn1 N	NBL _{n2}	EBT	WBL	WBT:	SBLn1	SBLn2				
Capacity (veh/h)		81	616	-	1055	-	289	616				
HCM Lane V/C Ratio		0.178	0.031	-	0.004	-	1.007	0.55				
HCM Control Delay (s)		58.9	11	-	8.4	0	94.3	17.8				
HCM Lane LOS		F	В	-	Α	Α	F	С				
HCM 95th %tile Q(veh)		0.6	0.1	-	0	-	10.6	3.3				

Baseline
JLB Traffic Engineering, Inc.
Synchro 9 Report
Page 7

	>	→	←	*_	\	4
Movement	EBL	EBT	WBT	WBR	SEL	SER
Lane Configurations		4	†	7		
Traffic Volume (veh/h)	201	295	363	85	0	0
Future Volume (Veh/h)	201	295	363	85	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	214	314	386	90	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			947			
pX, platoon unblocked						
vC, conflicting volume	386				1128	386
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	386				1128	386
tC, single (s)	4.4				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.5				3.5	3.3
p0 queue free %	79				100	100
cM capacity (veh/h)	1026				180	666
Direction, Lane #	EB 1	WB 1	WB 2			
Volume Total	528	386	90			
Volume Left	214	0	0			
Volume Right	0	0	90			
cSH	1026	1700	1700			
Volume to Capacity	0.21	0.23	0.05			
Queue Length 95th (ft)	20	0	0			
Control Delay (s)	5.3	0.0	0.0			
Lane LOS	Α					
Approach Delay (s)	5.3	0.0				
Approach LOS						
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utilizat	tion		52.4%	IC	U Level o	f Service
Analysis Period (min)			15			

	۶	→	•	√	←	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•	7		₽				7	7	+	7
Traffic Volume (veh/h)	34	254	24	28	255	27	275	29	40	8	25	16
Future Volume (veh/h)	34	254	24	28	255	27	275	29	40	8	25	16
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1439	1439	1439	1439	1439	1900	1439	1439	1439	1439	1439	1439
Adj Flow Rate, veh/h	42	314	30	35	315	33	340	36	49	10	31	20
Adj No. of Lanes	1	1	1	1	1	0	1	1	1	1	1	1
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, %	32	32	32	32	32	32	32	32	32	32	32	32
Cap, veh/h	57	453	385	50	397	42	386	492	418	17	105	89
Arrive On Green	0.04	0.31	0.31	0.04	0.31	0.31	0.28	0.34	0.34	0.01	0.07	0.07
Sat Flow, veh/h	1371	1439	1223	1371	1281	134	1371	1439	1223	1371	1439	1223
Grp Volume(v), veh/h	42	314	30	35	0	348	340	36	49	10	31	20
Grp Sat Flow(s), veh/h/ln	1371	1439	1223	1371	0	1416	1371	1439	1223	1371	1439	1223
Q Serve(g_s), s	1.9	12.1	1.1	1.6	0.0	14.2	15.0	1.1	1.7	0.5	1.3	1.0
Cycle Q Clear(g_c), s	1.9	12.1	1.1	1.6	0.0	14.2	15.0	1.1	1.7	0.5	1.3	1.0
Prop In Lane	1.00	450	1.00	1.00		0.09	1.00	400	1.00	1.00	405	1.00
Lane Grp Cap(c), veh/h	57	453	385	50	0	438	386	492	418	17	105	89
V/C Ratio(X)	0.74	0.69	0.08	0.70	0.00	0.79	0.88	0.07	0.12	0.57	0.29	0.22
Avail Cap(c_a), veh/h	113	698	593	109	0	682	626	1273	1082	109	730	620
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00 15.2	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.9	19.0		30.1	0.0	19.9 3.5	21.7 8.5	14.0	14.2	31.0	27.7	27.6 1.2
Incr Delay (d2), s/veh	17.2	1.9	0.1	16.4	0.0		0.0	0.1	0.1	26.3	1.5	
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	0.0	0.0 5.0	0.0	0.0	0.0	0.0 5.9	6.6	0.0 0.4	0.6	0.0	0.0	0.0 0.4
	1.0 47.1	20.9	0.4 15.3	46.5	0.0	23.5	30.2	14.1	14.4	57.2	0.6 29.2	28.8
LnGrp Delay(d),s/veh		20.9 C			0.0	23.3 C	30.2 C	14.1 B	14.4 B	57.2 E	29.2 C	20.0 C
LnGrp LOS	D		В	D	202	C	C		D			
Approach Vol, veh/h		386			383			425			61	
Approach LOS		23.3 C			25.6			27.0 C			33.7 C	
Approach LOS		C			С			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.0	26.5	6.5	25.1	22.0	9.5	6.8	24.8				
Change Period (Y+Rc), s	* 4.2	4.9	* 4.2	5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), s	* 5	55.8	* 5	30.6	* 29	32.0	* 5.2	30.4				
Max Q Clear Time (g_c+I1), s	2.5	3.7	3.6	14.1	17.0	3.3	3.9	16.2				
Green Ext Time (p_c), s	0.0	0.6	0.0	3.5	0.8	0.5	0.0	3.3				
Intersection Summary												
HCM 2010 Ctrl Delay			25.8									
HCM 2010 LOS			С									
Notes												

Baseline JLB Traffic Engineering, Inc.

	•	→	•	√	←	•	•	†	~	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₩			- ↔			∱ ⊅		ሻ	∱ ∱	
Traffic Volume (veh/h)	53	107	61	63	155	40	87	225	40	63	298	51
Future Volume (veh/h)	53	107	61	63	155	40	87	225	40	63	298	51
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	63	127	73	75	185	48	104	268	48	75	355	61
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	179	264	129	185	316	73	131	739	131	90	675	115
Arrive On Green	0.31	0.31	0.31	0.31	0.31	0.31	0.08	0.26	0.26	0.05	0.24	0.24
Sat Flow, veh/h	230	850	415	248	1020	234	1675	2840	502	1675	2858	487
Grp Volume(v), veh/h	263	0	0	308	0	0	104	156	160	75	206	210
Grp Sat Flow(s),veh/h/ln	1494	0	0	1502	0	0	1675	1671	1671	1675	1671	1673
Q Serve(g_s), s	0.0	0.0	0.0	1.2	0.0	0.0	2.5	3.1	3.2	1.8	4.4	4.5
Cycle Q Clear(g_c), s	5.6	0.0	0.0	6.9	0.0	0.0	2.5	3.1	3.2	1.8	4.4	4.5
Prop In Lane	0.24		0.28	0.24		0.16	1.00		0.30	1.00		0.29
Lane Grp Cap(c), veh/h	572	0	0	574	0	0	131	435	435	90	395	395
V/C Ratio(X)	0.46	0.00	0.00	0.54	0.00	0.00	0.80	0.36	0.37	0.83	0.52	0.53
Avail Cap(c_a), veh/h	1246	0	0	1266	0	0	439	1013	1013	276	839	840
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	11.8	0.0	0.0	12.1	0.0	0.0	18.7	12.5	12.5	19.3	13.7	13.8
Incr Delay (d2), s/veh	0.6	0.0	0.0	0.8	0.0	0.0	10.4	0.5	0.5	17.1	1.1	1.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.5	0.0	0.0	3.1	0.0	0.0	1.5	1.5	1.5	1.3	2.1	2.2
LnGrp Delay(d),s/veh	12.4	0.0	0.0	12.9	0.0	0.0	29.1	13.0	13.0	36.4	14.8	14.9
LnGrp LOS	В	2/2		В	200		С	B	В	D	B 401	В
Approach Vol, veh/h		263			308			420			491	
Approach Delay, s/veh		12.4			12.9			17.0			18.1	
Approach LOS		В			В			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.4	16.7		18.1	7.4	15.7		18.1				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 6.8	* 25		33.0	* 11	20.7		33.0				
Max Q Clear Time (g_c+I1), s	3.8	5.2		7.6	4.5	6.5		8.9				
Green Ext Time (p_c), s	0.0	3.6		3.5	0.1	3.2		3.4				
Intersection Summary												
HCM 2010 Ctrl Delay			15.7									
HCM 2010 LOS			В									
Notes												

Baseline
JLB Traffic Engineering, Inc.

Synchro 9 Report Page 13

Intersection						
Int Delay, s/veh	6.2					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations				↑	*	7
Traffic Vol, veh/h	92	0	0	85	28	219
Future Vol, veh/h	92	0	0	85	28	219
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Yield
Storage Length	-	-	-	-	85	0
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	33	0	0	33	33	33
Mvmt Flow	103	0	0	96	31	246
IVIVIIIL I IOVV	103	U	U	70	JI	240
	Major1	Λ	Najor2	<u> </u>	Minor1	
Conflicting Flow All	0	-	-	-	199	103
Stage 1	-	-	-	-	103	-
Stage 2	-	-	-	-	96	-
Critical Hdwy	-	-	-	-	6.73	6.53
Critical Hdwy Stg 1	-	-	-	-	5.73	-
Critical Hdwy Stg 2	-	-	-	-	5.73	-
Follow-up Hdwy	-	-	-	-	3.797	3.597
Pot Cap-1 Maneuver	_	0	0	-	725	874
Stage 1	_	0	0	-	849	-
Stage 2	_	0	0	_	856	_
Platoon blocked, %	_	U	U	_	000	
Mov Cap-1 Maneuver		_	_	_	725	874
Mov Cap-1 Maneuver	_	_	_	_	725	- 074
Stage 1	_	-	_	_	849	_
ū	-				856	
Stage 2	-	-	-	-	830	-
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		10.6	
HCM LOS					В	
Minor Lane/Major Mvm	ıt	NBTN	WLn1N		SBT	
Capacity (veh/h)		-	725	874	-	
HCM Lane V/C Ratio		-	0.043	0.282	-	
HCM Control Delay (s)		-	10.2	10.7	-	
HCM Lane LOS		-	В	В	-	
HCM 95th %tile Q(veh)		-	0.1	1.2	-	

Intersection												
Int Delay, s/veh	6.4											
			===	14451	14/5-	14/55	NE	NET	NES	05:	0==	055
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	_	ની	7					4			4	
Traffic Vol, veh/h	5	92	90	0	0	0	20	97	26	40	60	13
Future Vol, veh/h	5	92	90	0	0	0	20	97	26	40	60	13
Conflicting Peds, #/hr	0	0	0	0	0	0	_ 0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	100	-	-	-	-	-	-	-	-	-
Veh in Median Storage,		0	-		16979	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	50	50	50	50	50	50	50	50	50	50	50	50
Mvmt Flow	5	100	98	0	0	0	22	105	28	43	65	14
Major/Minor N	/linor2					N	/lajor1		ľ	Major2		
Conflicting Flow All	301	301	65				65	0	-	105	0	0
Stage 1	152	152	-				-	-	-	-	-	-
Stage 2	149	149	_				_	_	_	_	_	_
Critical Hdwy	6.9	7	6.7				4.6	_	-	4.6	_	_
Critical Hdwy Stg 1	5.9	6	-				-	_	_	-	_	_
Critical Hdwy Stg 2	5.9	6	-				_	_	-	_	_	_
Follow-up Hdwy	3.95	4.45	3.75				2.65	_	_	2.65	_	_
Pot Cap-1 Maneuver	601	540	880				1280	_	0	1234	_	0
Stage 1	771	689	-				-	_	0	-	_	0
Stage 2	774	691	-				_	_	0	_	_	0
Platoon blocked, %	.,,	371						_			_	
Mov Cap-1 Maneuver	569	0	880				1280		-	1234	_	_
Mov Cap 1 Maneuver	569	0	-				-	_	_		_	_
Stage 1	743	0	-				_		_	_	_	_
Stage 2	760	0	_					_	_	_	_	_
Jugo Z	, 00											
	F						NID			0.0		
Approach	EB						NB			SB		
HCM Control Delay, s	11.3						1.3			3.2		
HCM LOS	В											
Minor Lane/Major Mvmt	t	NBL	NBT I	EBLn1 l	EBL _{n2}	SBL	SBT					
Capacity (veh/h)		1280	-	569	880	1234	-					
HCM Lane V/C Ratio		0.017	_	0.185			_					
HCM Control Delay (s)		7.9	0	12.8	9.6	8	0					
HCM Lane LOS		Α	A	В	Α	A	A					
HCM 95th %tile Q(veh)		0.1	-	0.7	0.4	0.1	-					
700 2(7011)		J.,				J						

	۶	→	•	F	•	•	•	4	†	/	>	
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	†	7		Ä	^	7	Ţ	†	7	ħ	†
Traffic Volume (vph)	64	336	9	42	43	244	19	13	46	59	215	24
Future Volume (vph)	64	336	9	42	43	244	19	13	46	59	215	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	1.00	1.00		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1556	1638	1392		1556	3112	1392	1556	1638	1392	1556	1638
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1556	1638	1392		1556	3112	1392	1556	1638	1392	1556	1638
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	72	378	10	47	48	274	21	15	52	66	242	27
RTOR Reduction (vph)	0	0	7	0	0	0	15	0	0	55	0	0
Lane Group Flow (vph)	72	378	3	0	95	274	6	15	52	11	242	27
Heavy Vehicles (%)	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8		5	2		1	6
Permitted Phases			4				8			2		
Actuated Green, G (s)	6.3	20.8	20.8		5.2	19.7	19.7	0.5	11.6	11.6	13.9	25.0
Effective Green, g (s)	6.3	20.8	20.8		5.2	19.7	19.7	0.5	11.6	11.6	13.9	25.0
Actuated g/C Ratio	0.09	0.29	0.29		0.07	0.28	0.28	0.01	0.16	0.16	0.20	0.35
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	137	478	406		113	861	385	10	266	226	303	575
v/s Ratio Prot	0.05	c0.23			c0.06	0.09		0.01	c0.03		c0.16	0.02
v/s Ratio Perm			0.00				0.00			0.01		
v/c Ratio	0.53	0.79	0.01		0.84	0.32	0.02	1.50	0.20	0.05	0.80	0.05
Uniform Delay, d1	31.0	23.2	17.9		32.6	20.4	18.7	35.4	25.8	25.1	27.3	15.2
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	3.6	8.7	0.0		40.1	0.2	0.0	478.8	0.4	0.1	13.6	0.0
Delay (s)	34.6	31.9	17.9		72.7	20.6	18.7	514.1	26.1	25.2	41.0	15.3
Level of Service	С	С	В		Ε	С	В	F	С	С	D	В
Approach Delay (s)		32.0				33.2			80.7			33.3
Approach LOS		С				С			F			С
Intersection Summary												
HCM 2000 Control Delay			37.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.66									
Actuated Cycle Length (s)			71.2	S	um of lost	time (s)			19.7			
Intersection Capacity Utiliza	ition		54.9%	IC	CU Level o	of Service)		Α			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	SBR
Lane Configurations	7
Traffic Volume (vph)	68
Future Volume (vph)	68
Ideal Flow (vphpl)	1900
Total Lost time (s)	6.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1392
Flt Permitted	1.00
Satd. Flow (perm)	1392
Peak-hour factor, PHF	0.89
Adj. Flow (vph)	76
RTOR Reduction (vph)	49
Lane Group Flow (vph)	27
Heavy Vehicles (%)	16%
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	25.0
Effective Green, g (s)	25.0
Actuated g/C Ratio	0.35
Clearance Time (s)	6.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	488
v/s Ratio Prot	.00
v/s Ratio Perm	0.02
v/c Ratio	0.05
Uniform Delay, d1	15.3
Progression Factor	1.00
Incremental Delay, d2	0.0
Delay (s)	15.3
Level of Service	В
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	†		-022	7
Traffic Vol, veh/h	0	652	281	228	0	67
Future Vol, veh/h	0	652	281	228	0	67
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	.# -	0	0	-	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	17	17	3	17	3
Mvmt Flow	0	709	305	248	0	73
WWW. Tiow	J	707	000	210		70
			4 1 6		A!	
	/lajor1		Major2		Minor2	
Conflicting Flow All	-	0	-	0	-	277
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.945
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	- 3	3.3285
Pot Cap-1 Maneuver	0	-	-	-	0	718
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	718
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	_	_	-	_	-
otago z						
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.6	
HCM LOS					В	
Minor Lane/Major Mvmt	t	EBT	WBT	WBR S	SRI n1	
	ι	LUI	VVDI			
Capacity (veh/h)		-	-	-		
HCM Control Dolay (c)		-	-		0.101	
HCM Lang LOS		-	-	-		
HCM Lane LOS		-	-	-	B 0.3	
HCM 95th %tile Q(veh)						

Intersection												
Int Delay, s/veh	8.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		4		ሻ		7		4	7
Traffic Vol, veh/h	0	477	208	4	278	0	12	0	28	101	56	236
Future Vol, veh/h	0	477	208	4	278	0	12	0	28	101	56	236
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	60	-	-	-	0	-	45	-	-	55
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	0	22	22	22	22	0	22	0	22	22	22	22
Mvmt Flow	0	507	221	4	296	0	13	0	30	107	60	251
Major/Minor M	lajor1		1	Major2		ľ	Minor1		1	Minor2		
Conflicting Flow All	-	0	-	507	0	0	841	-	507	811	811	296
Stage 1	-	-	-	-	-	-	507	-	-	304	304	-
Stage 2	-	-	-	-	-	-	334	-	-	507	507	-
Critical Hdwy	-	-	-	4.32	-	-	7.32	-	6.42	7.32	6.72	6.42
Critical Hdwy Stg 1	-	-	-	-	-	-	6.32	-	-	6.32	5.72	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.32	-	-	6.32	5.72	-
Follow-up Hdwy	-	-	-	2.398	-	-	3.698	-	3.498	3.698	4.198	3.498
Pot Cap-1 Maneuver	0	-	0	963	-	0	263	0	528	276	292	699
Stage 1	0	-	0	-	-	0	513	0	-	665	628	-
Stage 2	0	-	0	-	-	0	640	0	-	513	508	-
Platoon blocked, %		-			-							
Mov Cap-1 Maneuver	-	-	-	963	-	-	141	-	528	259	291	699
Mov Cap-2 Maneuver	-	-	-	-	-	-	141	-	-	259	291	-
Stage 1	-	-	-	-	-	-	513	-	-	665	625	-
Stage 2	-	-	-	-	-	-	369	-	-	484	508	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			18.5			22.9		
HCM LOS							С			С		
Minor Lane/Major Mvmt		NBLn1 ľ	VBLn2	EBT	WBL	WBT S	SBLn1:	SBLn2				
Capacity (veh/h)		141	528	-	963	-		699				
HCM Lane V/C Ratio		0.091			0.004		0.619					
HCM Control Delay (s)		33.1	12.2	_	8.8	0	37.8	13				
HCM Lane LOS		D	В	_	Α	A	57.0 E	В				
HCM 95th %tile Q(veh)		0.3	0.2	-	0	-	3.8	1.6				
		0.0	0.2				0.0	1.0				

	*	→	←	*_	\	4
Movement	EBL	EBT	WBT	WBR	SEL	SER
Lane Configurations	EDE	4	<u>₩</u>	7	ULL	OLI
Traffic Volume (veh/h)	309	292	286	293	0	0
Future Volume (Veh/h)	309	292	286	293	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	340	321	314	322	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			947			
pX, platoon unblocked						
vC, conflicting volume	314				1315	314
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	314				1315	314
tC, single (s)	4.2				6.5	6.4
tC, 2 stage (s)						
tF (s)	2.3				3.6	3.4
p0 queue free %	71				100	100
cM capacity (veh/h)	1176				116	697
Direction, Lane #	EB 1	WB 1	WB 2			
Volume Total	661	314	322			
Volume Left	340	0	0			
Volume Right	0	0	322			
cSH	1176	1700	1700			
Volume to Capacity	0.29	0.18	0.19			
Queue Length 95th (ft)	30	0	0			
Control Delay (s)	6.4	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	6.4	0.0				
Approach LOS						
Intersection Summary						
Average Delay			3.3			
Intersection Capacity Utiliz	zation		57.3%	IC	U Level c	f Service
Analysis Period (min)			15			

	ၨ	→	•	•	←	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	7	4î		7	↑	7	7	↑	7
Traffic Volume (veh/h)	11	300	5	36	360	7	234	37	52	10	14	31
Future Volume (veh/h)	11	300	5	36	360	7	234	37	52	10	14	31
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1557	1557	1557	1557	1557	1900	1557	1557	1557	1557	1557	1557
Adj Flow Rate, veh/h	12	330	5	40	396	8	257	41	57	11	15	34
Adj No. of Lanes	1	1	1	1	1	0	1	1	1	1	1	1
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	22	22	22	22	22	22	22	22	22	22	22	22
Cap, veh/h	23	499	424	63	529	11	261	391	332	21	138	118
Arrive On Green	0.02	0.32	0.32	0.04	0.35	0.35	0.18	0.25	0.25	0.01	0.09	0.09
Sat Flow, veh/h	1483	1557	1324	1483	1521	31	1483	1557	1324	1483	1557	1324
Grp Volume(v), veh/h	12	330	5	40	0	404	257	41	57	11	15	34
Grp Sat Flow(s),veh/h/ln	1483	1557	1324	1483	0	1552	1483	1557	1324	1483	1557	1324
Q Serve(g_s), s	0.4	9.1	0.1	1.3	0.0	11.5	8.6	1.0	1.7	0.4	0.4	1.2
Cycle Q Clear(g_c), s	0.4	9.1	0.1	1.3	0.0	11.5	8.6	1.0	1.7	0.4	0.4	1.2
Prop In Lane	1.00		1.00	1.00	_	0.02	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	23	499	424	63	0	539	261	391	332	21	138	118
V/C Ratio(X)	0.53	0.66	0.01	0.63	0.00	0.75	0.98	0.10	0.17	0.52	0.11	0.29
Avail Cap(c_a), veh/h	148	953	810	148	0	950	261	1115	948	148	997	848
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.4	14.6	11.6	23.5	0.0	14.4	20.5	14.4	14.7	24.5	20.9	21.3
Incr Delay (d2), s/veh	17.6	1.5	0.0	10.0	0.0	2.1	51.1	0.1	0.2	18.7	0.3	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	4.1	0.0	0.7	0.0	5.1	7.2	0.4	0.6	0.3	0.2	0.5
LnGrp Delay(d),s/veh	42.0	16.2	11.6	33.5	0.0	16.5	71.6	14.5	14.9	43.2	21.3	22.6
LnGrp LOS	D	В	В	С		В	E	В	В	D	C	С
Approach Vol, veh/h		347			444			355			60	
Approach Delay, s/veh		17.0			18.0			55.9			26.1	
Approach LOS		В			В			E			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	4.9	17.4	6.3	21.3	13.0	9.3	5.0	22.7				
Change Period (Y+Rc), s	* 4.2	4.9	* 4.2	5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), s	* 5	35.8	* 5	30.6	* 8.8	32.0	* 5	30.6				
Max Q Clear Time (g_c+I1), s	2.4	3.7	3.3	11.1	10.6	3.2	2.4	13.5				
Green Ext Time (p_c), s	0.0	0.6	0.0	4.1	0.0	0.5	0.0	3.9				
Intersection Summary												
HCM 2010 Ctrl Delay			29.3									
HCM 2010 LOS			С									
Notes												

	ၨ	→	•	•	←	•	1	†	/	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħβ		ሻ	∱ ⊅	
Traffic Volume (veh/h)	44	154	80	45	123	76	69	503	48	29	323	56
Future Volume (veh/h)	44	154	80	45	123	76	69	503	48	29	323	56
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	46	160	83	47	128	79	72	524	50	30	336	58
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	141	277	128	151	258	139	87	944	90	45	803	137
Arrive On Green	0.30	0.30	0.30	0.30	0.30	0.30	0.05	0.31	0.31	0.03	0.28	0.28
Sat Flow, veh/h	140	933	432	164	871	467	1675	3085	294	1675	2856	488
Grp Volume(v), veh/h	289	0	0	254	0	0	72	283	291	30	195	199
Grp Sat Flow(s),veh/h/ln	1505	0	0	1502	0	0	1675	1671	1707	1675	1671	1673
Q Serve(g_s), s	1.0	0.0	0.0	0.0	0.0	0.0	1.8	5.9	6.0	0.7	4.0	4.1
Cycle Q Clear(g_c), s	6.7	0.0	0.0	5.7	0.0	0.0	1.8	5.9	6.0	0.7	4.0	4.1
Prop In Lane	0.16		0.29	0.19		0.31	1.00		0.17	1.00		0.29
Lane Grp Cap(c), veh/h	546	0	0	548	0	0	87	512	523	45	470	470
V/C Ratio(X)	0.53	0.00	0.00	0.46	0.00	0.00	0.83	0.55	0.56	0.67	0.42	0.42
Avail Cap(c_a), veh/h	1256	0	0	1240	0	0	353	1039	1061	232	907	908
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	12.7	0.0	0.0	12.4	0.0	0.0	19.6	12.1	12.1	20.2	12.2	12.3
Incr Delay (d2), s/veh	0.8	0.0	0.0	0.6	0.0	0.0	17.6	0.9	0.9	15.9	0.6	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.9	0.0	0.0	2.5	0.0	0.0	1.2	2.8	2.9	0.5	1.9	2.0
LnGrp Delay(d),s/veh	13.5	0.0	0.0	13.0	0.0	0.0	37.2	13.1	13.1	36.1	12.8	12.9
LnGrp LOS	В			В			D	В	В	D	В	В
Approach Vol, veh/h		289			254			646			424	
Approach Delay, s/veh		13.5			13.0			15.8			14.5	
Approach LOS		В			В			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.3	18.8		17.7	6.4	17.8		17.7				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 5.8	* 26		33.0	* 8.8	22.7		33.0				
Max Q Clear Time (q_c+l1), s	2.7	8.0		8.7	3.8	6.1		7.7				
Green Ext Time (p_c), s	0.0	4.8		3.2	0.0	4.7		3.3				
Intersection Summary												
HCM 2010 Ctrl Delay			14.6									
HCM 2010 LOS			В									
Notes												

Intersection						
Int Delay, s/veh	4.5					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	†	,,,,,,	002	↑	ሻ	7
Traffic Vol, veh/h	135	0	0	58	11	144
Future Vol, veh/h	135	0	0	58	11	144
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	Yield
Storage Length	-	-	-	-	85	0
Veh in Median Storage	, # 0	-	-	0	0	_
Grade, %	0	-	-	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	24	0	0	24	24	24
Mvmt Flow	145	0	0	62	12	155
WWW. TOW	170	U	U	02	12	100
	Major1	Λ	Major2	N	Minor1	
Conflicting Flow All	0	-	-	-	207	145
Stage 1	-	-	-	-	145	-
Stage 2	-	-	-	-	62	-
Critical Hdwy	-	-	-	-	6.64	6.44
Critical Hdwy Stg 1	-	-	-	-	5.64	-
Critical Hdwy Stg 2	-	-	-	-	5.64	-
Follow-up Hdwy	-	-	-	-	3.716	3.516
Pot Cap-1 Maneuver	-	0	0	-	734	847
Stage 1	-	0	0	-	831	-
Stage 2	-	0	0	-	908	-
Platoon blocked, %	_			_		
Mov Cap-1 Maneuver	-	-	_	_	734	847
Mov Cap-2 Maneuver	_	_	_	_	734	-
Stage 1	_	_	_	_	831	_
Stage 2	_	_	_	_	908	_
Stage 2					700	
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		10.2	
HCM LOS					В	
			NA/I 51N	\// n2	SBT	
Minor Lanc/Major Mum	ıt .	MIDTM		IVVLIIZ	SDI	
Minor Lane/Major Mvm	ıt	NBTN				
Capacity (veh/h)	ıt	-	734	847	-	
Capacity (veh/h) HCM Lane V/C Ratio		-	734 0.016	847 0.183	-	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		- - -	734 0.016 10	847 0.183 10.2	-	
Capacity (veh/h) HCM Lane V/C Ratio		-	734 0.016	847 0.183	-	

Intersection												
Int Delay, s/veh	7.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની	7					4			4	
Traffic Vol, veh/h	3	199	67	0	0	0	12	118	23	34	34	2
Future Vol, veh/h	3	199	67	0	0	0	12	118	23	34	34	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	100	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	16979	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	22	22	22	0	0	0	22	22	22	22	22	22
Mvmt Flow	3	212	71	0	0	0	13	126	24	36	36	2
Major/Minor I	Minor2					١	Major1		N	Major2		
Conflicting Flow All	260	260	36				36	0	-	126	0	0
Stage 1	109	109	-				-	-	-	-	-	-
Stage 2	151	151	-				-	-	-	-	-	-
Critical Hdwy	6.62	6.72	6.42				4.32	-	-	4.32	-	-
Critical Hdwy Stg 1	5.62	5.72	-				-	-	-	-	-	-
Critical Hdwy Stg 2	5.62	5.72	-				-	-	-	-	-	-
Follow-up Hdwy	3.698	4.198	3.498				2.398	-	-	2.398	-	-
Pot Cap-1 Maneuver	688	612	982				1455	-	0	1346	-	0
Stage 1	868	768	-				-	-	0	-	-	0
Stage 2	830	736	-				-	-	0	-	-	0
Platoon blocked, %								-			-	
Mov Cap-1 Maneuver	663	0	982				1455	-	-	1346	-	-
Mov Cap-2 Maneuver	663	0	-				-	-	-	-	-	-
Stage 1	845	0	-				-	-	-	-	-	-
Stage 2	822	0	-				-	-	-	-	-	-
Approach	EB						NB			SB		
HCM Control Delay, s	12						0.7			3.9		
HCM LOS	В						0.7			J. /		
110IVI 200	U											
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1 I	FBI n2	SBL	SBT					
Capacity (veh/h)		1455	-		982		-					
HCM Lane V/C Ratio		0.009		0.324			-					
HCM Control Delay (s)		7.5	0	13	9	7.7	0					
HCM Lane LOS		7.5 A	A	В	A	Α.	A					
HCM 95th %tile Q(veh))	0	-	1.4	0.2	0.1	-					
110W 70W 70W Q(VCH))	- 0		1.7	0.2	0.1						

	۶	→	•	•	←	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7		र्स		ሻ		7	ሻ	•	7
Traffic Volume (veh/h)	0	341	102	4	341	0	13	0	17	153	109	305
Future Volume (veh/h)	0	341	102	4	341	0	13	0	17	153	109	305
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1496	1496	1900	1496	0	1496	0	1496	1496	1496	1496
Adj Flow Rate, veh/h	0	379	0	4	379	0	14	0	19	170	121	0
Adj No. of Lanes	0	1	1	0	1	0	1	0	1	1	1	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	0	27	27	27	27	0	27	0	27	27	27	27
Cap, veh/h	0	572	486	4	408	0	66	0	0	288	149	127
Arrive On Green	0.00	0.26	0.00	0.28	0.28	0.00	0.05	0.00	0.00	0.20	0.10	0.00
Sat Flow, veh/h	0	1496	1272	16	1480	0	1425	14		1425	1496	1272
Grp Volume(v), veh/h	0	379	0	383	0	0	14	50.3		170	121	0
Grp Sat Flow(s),veh/h/ln	0	1496	1272	1495	0	0	1425	D		1425	1496	1272
Q Serve(g_s), s	0.0	24.1	0.0	26.4	0.0	0.0	1.0			11.5	8.4	0.0
Cycle Q Clear(g_c), s	0.0	24.1	0.0	26.4	0.0	0.0	1.0			11.5	8.4	0.0
Prop In Lane	0.00		1.00	0.01		0.00	1.00			1.00		1.00
Lane Grp Cap(c), veh/h	0	572	486	412	0	0	66			288	149	127
V/C Ratio(X)	0.00	0.66	0.00	0.93	0.00	0.00	0.21			0.59	0.81	0.00
Avail Cap(c_a), veh/h	0	572	486	457	0	0	67			288	209	178
HCM Platoon Ratio	1.00	0.67	0.67	1.00	1.00	1.00	1.00			1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00	1.00	0.00	0.00	1.00			1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	33.3	0.0	37.4	0.0	0.0	48.7			38.3	46.8	0.0
Incr Delay (d2), s/veh	0.0	2.9	0.0	29.7	0.0	0.0	1.6			3.1	15.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	10.4	0.0	14.3	0.0	0.0	0.4			4.7	4.1	0.0
LnGrp Delay(d),s/veh	0.0	36.1	0.0	67.1	0.0	0.0	50.3			41.4	61.8	0.0
LnGrp LOS		D 070		<u>E</u>	000		D			D	E	
Approach Vol, veh/h		379			383						291	
Approach Delay, s/veh		36.1			67.1						49.9	
Approach LOS		D			Е						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1			4	5	6		8				
Phs Duration (G+Y+Rc), s	25.6			45.8	9.1	16.6		34.5				
Change Period (Y+Rc), s	4.2			5.3	4.2	* 6		5.3				
Max Green Setting (Gmax), s	14.8			33.0	5.0	* 15		32.4				
Max Q Clear Time (g_c+l1), s	13.5			26.1	3.0	10.4		28.4				
Green Ext Time (p_c), s	0.1			1.2	0.0	0.2		8.0				
Intersection Summary												
HCM 2010 Ctrl Delay			51.2									
HCM 2010 LOS			D									
Notes												

	۶	→	•	√	←	•	•	†	/	>		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		र्स		ሻ		7	ሻ	↑	7
Traffic Volume (veh/h)	0	477	208	4	278	0	12	0	28	101	56	236
Future Volume (veh/h)	0	477	208	4	278	0	12	0	28	101	56	236
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1557	1557	1900	1557	0	1557	0	1557	1557	1557	1557
Adj Flow Rate, veh/h	0	507	0	4	296	0	13	0	30	107	60	0
Adj No. of Lanes	0	1	1	0	1	0	1	0	1	1	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	22	22	22	22	0	22	0	22	22	22	22
Cap, veh/h	0	774	658	4	328	0	65	0	0	229	88	74
Arrive On Green	0.00	0.99	0.00	0.21	0.21	0.00	0.04	0.00	0.00	0.15	0.06	0.00
Sat Flow, veh/h	0	1557	1324	21	1536	0	1483	13		1483	1557	1324
Grp Volume(v), veh/h	0	507	0	300	0	0	13	52.2		107	60	0
Grp Sat Flow(s),veh/h/ln	0	1557	1324	1556	0	0	1483	D		1483	1557	1324
Q Serve(g_s), s	0.0	0.6	0.0	20.7	0.0	0.0	0.9			7.2	4.2	0.0
Cycle Q Clear(g_c), s	0.0	0.6	0.0	20.7	0.0	0.0	0.9			7.2	4.2	0.0
Prop In Lane	0.00		1.00	0.01		0.00	1.00			1.00		1.00
Lane Grp Cap(c), veh/h	0	774	658	333	0	0	65			229	88	74
V/C Ratio(X)	0.00	0.65	0.00	0.90	0.00	0.00	0.20			0.47	0.68	0.00
Avail Cap(c_a), veh/h	0	774	658	417	0	0	67			229	170	144
HCM Platoon Ratio	1.00	2.00	2.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00	1.00	0.00	0.00	1.00			1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	0.2	0.0	42.1	0.0	0.0	50.7			42.4	50.9	0.0
Incr Delay (d2), s/veh	0.0	2.0	0.0	29.8	0.0	0.0	1.5			1.5	9.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.5	0.0	11.6	0.0	0.0	0.4			3.1	2.0	0.0
LnGrp Delay(d),s/veh	0.0	2.2	0.0	71.9	0.0	0.0	52.2			43.8	60.0	0.0
LnGrp LOS		A		E			D			D	E	
Approach Vol, veh/h		507			300						167	
Approach Delay, s/veh		2.2			71.9						49.6	
Approach LOS		Α			Е						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1			4	5	6		8				
Phs Duration (G+Y+Rc), s	21.2			60.0	9.0	12.2		28.8				
Change Period (Y+Rc), s	4.2			5.3	4.2	* 6		5.3				
Max Green Setting (Gmax), s	11.4			42.7	5.0	* 12		29.5				
Max Q Clear Time (q_c+I1), s	9.2			2.6	2.9	6.2		22.7				
Green Ext Time (p_c), s	0.1			3.3	0.0	0.1		8.0				
Intersection Summary												
HCM 2010 Ctrl Delay			32.1									
HCM 2010 LOS			С									
Notes												

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	T	R	UL	T	T	R	L	T	R	L	T
Maximum Queue (ft)	97	213	12	159	132	130	68	24	63	44	174	342
Average Queue (ft)	37	70	1	65	52	52	15	2	16	13	132	58
95th Queue (ft)	84	153	6	121	108	104	45	13	44	37	198	220
Link Distance (ft)		2623	2623		289	289			1968			3215
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			185			100	150		150	100	
Storage Blk Time (%)						1					24	
Queuing Penalty (veh)						1					20	

Intersection: 1: Orange Avenue & North Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	245
Average Queue (ft)	32
95th Queue (ft)	105
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	130
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 2: North Avenue & Driveway

Movement	EB	SB
Directions Served	T	R
Maximum Queue (ft)	154	67
Average Queue (ft)	5	34
95th Queue (ft)	51	58
Link Distance (ft)	289	134
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	EB	WB	NB	NB	SB	SB	SB	
Directions Served	T	R	LT	L	R	L	Т	R	
Maximum Queue (ft)	469	260	450	87	60	312	178	240	
Average Queue (ft)	255	38	208	18	12	128	99	28	
95th Queue (ft)	418	183	403	54	38	229	165	134	
Link Distance (ft)	469		730	2392			1060		
Upstream Blk Time (%)	1								
Queuing Penalty (veh)	5								
Storage Bay Dist (ft)		60			45	300		300	
Storage Blk Time (%)	50	0		10	3	0			
Queuing Penalty (veh)	51	0		2	0	2			

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	WB	WB
Directions Served	LT	T	R
Maximum Queue (ft)	270	22	86
Average Queue (ft)	109	2	6
95th Queue (ft)	221	13	36
Link Distance (ft)	730	367	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			85
Storage Blk Time (%)			0
Queuing Penalty (veh)			0

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	R	L	T	R	
Maximum Queue (ft)	90	292	67	95	220	295	446	56	47	76	51	
Average Queue (ft)	28	121	8	27	120	138	41	14	7	23	14	
95th Queue (ft)	67	222	32	70	214	242	210	41	32	58	41	
Link Distance (ft)		473			5162		609			1319		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	150		100	150		180		180	155		355	
Storage Blk Time (%)		9			5	4						
Queuing Penalty (veh)		5			1	3						

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	LTR	LTR	L	T	TR	L	T	TR	
Maximum Queue (ft)	290	224	113	92	135	97	111	137	
Average Queue (ft)	102	102	51	49	54	45	57	67	
95th Queue (ft)	235	180	97	83	101	86	96	102	
Link Distance (ft)	5162	4573		5304	5304		5297	5297	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)			245			150			
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 7: Cedar Avenue & SR 99 NB Off-Ramp

Movement	NW	NW
Directions Served	L	R
Maximum Queue (ft)	47	74
Average Queue (ft)	13	4
95th Queue (ft)	38	30
Link Distance (ft)		1717
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	85	
Storage Blk Time (%)		0
Queuing Penalty (veh)		0

Intersection: 8: Cedar Avenue & Parkway Drive/SR 99 SB On-Ramp

Movement	EB	EB	NB	SB
Directions Served	LT	R	LTR	LTR
Maximum Queue (ft)	100	73	75	25
Average Queue (ft)	48	9	4	2
95th Queue (ft)	79	42	29	14
Link Distance (ft)	2392		3449	1087
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		100		
Storage Blk Time (%)	0			
Queuing Penalty (veh)	0			

Network Summary

Network wide Queuing Penalty: 90

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	Т	R	UL	Т	Т	R	L	Т	R	L	T
Maximum Queue (ft)	180	272	15	140	106	107	21	44	167	63	174	301
Average Queue (ft)	67	139	2	72	41	51	6	6	42	20	122	52
95th Queue (ft)	123	246	11	122	97	105	20	25	96	46	175	200
Link Distance (ft)		2623	2623		289	289			1968			3215
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			185			100	150		150	100	
Storage Blk Time (%)		0				1			1		27	
Queuing Penalty (veh)		0				0			0		25	

Intersection: 1: Orange Avenue & North Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	245
Average Queue (ft)	38
95th Queue (ft)	131
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	130
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 2: North Avenue & Driveway

Movement	EB	SB
Directions Served	T	R
Maximum Queue (ft)	119	75
Average Queue (ft)	17	31
95th Queue (ft)	78	59
Link Distance (ft)	289	137
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	EB	WB	NB	NB	SB	SB	SB	
Directions Served	T	R	LT	L	R	L	Т	R	
Maximum Queue (ft)	483	260	413	56	75	209	155	164	
Average Queue (ft)	322	181	163	5	25	83	50	15	
95th Queue (ft)	500	377	314	24	63	166	112	88	
Link Distance (ft)	469		730	2393			1060		
Upstream Blk Time (%)	2								
Queuing Penalty (veh)	13								
Storage Bay Dist (ft)		60			45	300		300	
Storage Blk Time (%)	46			0	11				
Queuing Penalty (veh)	95			0	1				

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	WB
Directions Served	LT	R
Maximum Queue (ft)	412	89
Average Queue (ft)	117	12
95th Queue (ft)	279	50
Link Distance (ft)	730	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		85
Storage Blk Time (%)		0
Queuing Penalty (veh)		0

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	R	L	T	R	
Maximum Queue (ft)	66	337	21	106	338	288	184	80	87	76	138	
Average Queue (ft)	16	137	1	47	110	163	31	23	20	12	33	
95th Queue (ft)	50	269	7	105	229	254	90	53	62	40	93	
Link Distance (ft)		473			5162		609			1319		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	150		100	150		180		180	155		355	
Storage Blk Time (%)		13			3	8	0					
Queuing Penalty (veh)		2			1	7	0					

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	LTR	LTR	L	T	TR	L	T	TR	
Maximum Queue (ft)	318	177	151	164	236	96	222	191	
Average Queue (ft)	132	80	53	71	86	30	57	68	
95th Queue (ft)	261	137	106	126	156	76	117	129	
Link Distance (ft)	5162	4573		5304	5304		5297	5297	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)			245			150			
Storage Blk Time (%)							0		
Queuing Penalty (veh)							0		

Intersection: 7: Cedar Avenue & SR 99 NB Off-Ramp

Movement	NW	NW
Directions Served	L	R
Maximum Queue (ft)	63	74
Average Queue (ft)	13	4
95th Queue (ft)	45	31
Link Distance (ft)		1717
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	85	
Storage Blk Time (%)		0
Queuing Penalty (veh)		0

Intersection: 8: Cedar Avenue & Parkway Drive/SR 99 SB On-Ramp

Movement	EB	EB	NB	SB
Directions Served	LT	R	LTR	LTR
Maximum Queue (ft)	103	37	80	74
Average Queue (ft)	48	1	4	6
95th Queue (ft)	84	12	28	32
Link Distance (ft)	2393		3449	1084
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		100		
Storage Blk Time (%)	0			
Queuing Penalty (veh)	0			

Network Summary

Network wide Queuing Penalty: 146

Appendix G: Near Term plus Project Traffic Conditions

	۶	→	•	F	•	←	•	1	†	~	/	ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	†	7		Ä	^	7	7	†	7	7	†
Traffic Volume (vph)	67	193	134	49	735	609	49	31	93	194	215	339
Future Volume (vph)	67	193	134	49	735	609	49	31	93	194	215	339
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	1.00	1.00		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1543	1624	1380		1543	3085	1380	1543	1624	1380	1543	1624
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1543	1624	1380		1543	3085	1380	1543	1624	1380	1543	1624
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	74	214	149	54	817	677	54	34	103	216	239	377
RTOR Reduction (vph)	0	0	118	0	0	0	34	0	0	164	0	0
Lane Group Flow (vph)	74	214	31	0	871	677	20	34	103	52	239	377
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8		5	2		1	6
Permitted Phases			4				8			2		
Actuated Green, G (s)	7.4	18.7	18.7		21.8	33.1	33.1	2.5	21.5	21.5	7.1	26.1
Effective Green, g (s)	7.4	18.7	18.7		21.8	33.1	33.1	2.5	21.5	21.5	7.1	26.1
Actuated g/C Ratio	0.08	0.21	0.21		0.25	0.37	0.37	0.03	0.24	0.24	0.08	0.29
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	128	341	290		378	1149	514	43	393	334	123	477
v/s Ratio Prot	0.05	0.13			c0.56	c0.22		0.02	0.06		c0.15	c0.23
v/s Ratio Perm			0.02				0.01			0.04		
v/c Ratio	0.58	0.63	0.11		2.30	0.59	0.04	0.79	0.26	0.16	1.94	0.79
Uniform Delay, d1	39.2	31.9	28.3		33.5	22.4	17.7	42.9	27.2	26.5	40.9	28.8
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	6.2	3.6	0.2		595.2	0.8	0.0	63.1	0.4	0.2	452.7	8.7
Delay (s)	45.4	35.5	28.5		628.7	23.2	17.8	106.0	27.6	26.7	493.5	37.5
Level of Service	D	D	С		F	С	В	F	С	С	F	D
Approach Delay (s)		34.8				352.2			34.6			170.6
Approach LOS		С				F			С			F
Intersection Summary												
HCM 2000 Control Delay			228.1	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.38									
Actuated Cycle Length (s)			88.8		um of los				19.7			
Intersection Capacity Utiliza	tion		93.9%	IC	U Level	of Service)		F			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

Movement	SBR
Lane Configurations	7
Traffic Volume (vph)	166
Future Volume (vph)	166
Ideal Flow (vphpl)	1900
Total Lost time (s)	6.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1380
Flt Permitted	1.00
Satd. Flow (perm)	1380
Peak-hour factor, PHF	0.90
Adj. Flow (vph)	184
RTOR Reduction (vph)	100
Lane Group Flow (vph)	84
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	26.1
Effective Green, g (s)	26.1
Actuated g/C Ratio	0.29
Clearance Time (s)	6.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	405
v/s Ratio Prot	
v/s Ratio Perm	0.06
v/c Ratio	0.21
Uniform Delay, d1	23.6
Progression Factor	1.00
Incremental Delay, d2	0.3
Delay (s)	23.8
Level of Service	С
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection summary	

Synchro 9 Report Baseline Page 2

Intersection Int Delay, s/veh	0.7					
			14/5-	14/55	05:	055
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			∱ ⊅			7
Traffic Vol, veh/h	0	651	1366	280	0	76
Future Vol, veh/h	0	651	1366	280	0	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	17	17	3	0	3
Mvmt Flow	0	708	1485	304	0	83
WWW. Flow		700	1 100	001		00
Major/Minor N	1ajor1	Ν	Najor2		/linor2	
Conflicting Flow All	-	0	-	0	-	895
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.945
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	_	_	_	_	- 3	3.3285
Pot Cap-1 Maneuver	0	_	_	_	0	283
Stage 1	0	_	_	_	0	-
Stage 2	0	_	_	_	0	_
Platoon blocked, %	U		_	_	U	_
		-		-		283
Mov Cap-1 Maneuver	-	-	-		-	
Mov Cap-2 Maneuver	-	_	_	-	-	-
Stage 1	-	-	-	-	-	-
Stage 1 Stage 2	-	-	- -	-	-	- -
	-	-	-	-	-	-
Stage 2	- - FB	-	-	-	- - SB	-
Stage 2 Approach	- - EB	-	- - WB	-	- - SB	-
Stage 2 Approach HCM Control Delay, s	EB 0	-	-	-	22.9	-
Stage 2 Approach		-	- - WB	-		-
Stage 2 Approach HCM Control Delay, s		-	- - WB	-	22.9	-
Stage 2 Approach HCM Control Delay, s	0	EBT	- - WB	- - WBR S	22.9 C	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	0	-	- - WB 0	WBRS	22.9 C SBLn1	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	0	-	- - WB 0	-	22.9 C SBLn1 283	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	EBT	WB 0	-	22.9 C SBLn1 283 0.292	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	0	EBT -	WB 0	- -	22.9 C SBLn1 283 0.292 22.9	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	EBT	WB 0	-	22.9 C SBLn1 283 0.292	

Intersection												
Int Delay, s/veh	536.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7		4				7		र्स	7
Traffic Vol, veh/h	0	549	108	4	842	0	13	0	17	153	220	783
Future Vol, veh/h	0	549	108	4	842	0	13	0	17	153	220	783
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Free	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	60	-	-	-	0	-	45	-	-	55
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	27	27	27	27	0	27	0	27	27	27	27
Mvmt Flow	0	610	120	4	936	0	14	0	19	170	244	870
Major/Minor	Major1			Major2		1	Minor1			Minor2		
Conflicting Flow All		0	-	610	0	0	1677	-	610	1554	1554	936
Stage 1	_		-		-	-	610	-	-	944	944	-
Stage 2	_	_	_	_	_	_	1067	_	_	610	610	_
Critical Hdwy	_	-	-	4.37	-	-	7.37	-	6.47	7.37	6.77	6.47
Critical Hdwy Stg 1	_		-	-	_	-	6.37	-	-	6.37	5.77	-
Critical Hdwy Stg 2	_	-	-	-	-	-	6.37	-	-	6.37	5.77	-
Follow-up Hdwy	_	_	_	2.443	_	_	3.743	_	3.543	3.743	4.243	3.543
Pot Cap-1 Maneuver	0	_	0	858	_	0	66	0	452		~ 100	
Stage 1	0		0		_	0	441	0	-	284	310	-
Stage 2	0	-	0	-	-	0	241	0	-	441	448	-
Platoon blocked, %		_			_							
Mov Cap-1 Maneuver	_	_	-	858	_	_	_	_	452	~ 77	~ 99	~ 289
Mov Cap-2 Maneuver	_	_	_	-	_	_	_	_	-	~ 77	~ 99	
Stage 1	-	-	-	-	-	-	441	-	-	284	307	-
Stage 2	_	_	_	-	_	_		-	_	423	448	-
- · · g												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0					\$	1198.7		
HCM LOS	Ū						_		Ψ	F		
TOW EOO										'		
Minor Lane/Major Mvn	nt N	NBLn1 N	JBI n2	EBT	WBL	WRT :	SBLn1 S	SBI n2				
Capacity (veh/h)		-	452	-	858	-	89	289				
HCM Lane V/C Ratio		_	0.042		0.005		4.657	3.01				
HCM Control Delay (s))		13.3	_	9.2		4.037 1740.9\$					
HCM Lane LOS)	-	13.3 B	-	9.2 A	A	1740.95 F	940.4 F				
HCM 95th %tile Q(veh	1)	-	0.1	-	0	- A	44.2	76.9				
	7		0.1		U		44.2	70.7				
Notes												
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30	00s	+: Com	putatior	Not D	efined	*: Al	l major '	volume

	y	→	•	*_	\	4	
Movement	EBL	EBT	WBT	WBR	SEL	SER	
Lane Configurations		4	<u>₩</u>	7	ULL	CLIC	
Traffic Volume (veh/h)	307	397	864	108	0	0	
Future Volume (Veh/h)	307	397	864	108	0	0	
Sign Control		Free	Free		Stop	-	
Grade		0%	0%		0%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	327	422	919	115	0	0	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)			947				
pX, platoon unblocked	0.66				0.66	0.66	
vC, conflicting volume	919				1995	919	
vC1, stage 1 conf vol	,				.,,,	,	
vC2, stage 2 conf vol							
vCu, unblocked vol	624				2246	624	
tC, single (s)	4.4				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.5				3.5	3.3	
p0 queue free %	40				100	100	
cM capacity (veh/h)	549				13	324	
Direction, Lane #	EB 1	WB 1	WB 2				
Volume Total	749	919	115				
Volume Left	327	0	0				
Volume Right	0	0	115				
cSH	549	1700	1700				
Volume to Capacity	0.60	0.54	0.07				
Queue Length 95th (ft)	97	0.01	0.07				
Control Delay (s)	18.3	0.0	0.0				
Lane LOS	C	0.0	0.0				
Approach Delay (s)	18.3	0.0					
Approach LOS	10.0	0.0					
Intersection Summary							
Average Delay			7.7				
Intersection Capacity Utilize	zation		90.0%	IC	:U Level c	of Sorvice	
Analysis Period (min)	ZaliUH		15	IC	O Level C	n Service	
Analysis Period (min)			15				

	ၨ	→	•	•	—	•	•	†	~	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	1>		ሻ	†	7	7	†	7
Traffic Volume (veh/h)	39	345	24	28	719	27	326	37	49	9	35	30
Future Volume (veh/h)	39	345	24	28	719	27	326	37	49	9	35	30
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1439	1439	1439	1439	1439	1900	1439	1439	1439	1439	1439	1439
Adj Flow Rate, veh/h	48	426	30	35	888	33	402	46	60	11	43	37
Adj No. of Lanes	1	1	1	1	1	0	1	1	1	1	1	1
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, %	32	32	32	32	32	32	32	32	32	32	32	32
Cap, veh/h	56	621	528	46	585	22	325	412	351	19	91	77
Arrive On Green	0.04	0.43	0.43	0.03	0.42	0.42	0.24	0.29	0.29	0.01	0.06	0.06
Sat Flow, veh/h	1371	1439	1223	1371	1379	51	1371	1439	1223	1371	1439	1223
Grp Volume(v), veh/h	48	426	30	35	0	921	402	46	60	11	43	37
Grp Sat Flow(s),veh/h/ln	1371	1439	1223	1371	0	1430	1371	1439	1223	1371	1439	1223
Q Serve(g_s), s	2.8	19.0	1.1	2.0	0.0	33.7	18.8	1.9	2.9	0.6	2.3	2.3
Cycle Q Clear(g_c), s	2.8	19.0	1.1	2.0	0.0	33.7	18.8	1.9	2.9	0.6	2.3	2.3
Prop In Lane	1.00		1.00	1.00		0.04	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	56	621	528	46	0	607	325	412	351	19	91	77
V/C Ratio(X)	0.85	0.69	0.06	0.75	0.00	1.52	1.24	0.11	0.17	0.59	0.47	0.48
Avail Cap(c_a), veh/h	152	621	528	152	0	607	325	785	667	183	636	541
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	37.8	18.2	13.1	38.0	0.0	22.8	30.3	20.9	21.2	38.9	35.9	35.9
Incr Delay (d2), s/veh	27.9	3.1	0.0	21.5	0.0	241.0	130.9	0.1	0.2	26.5	3.8	4.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.5	8.0	0.4	1.0	0.0	53.8	18.8	0.8	1.0	0.4	1.0	0.9
LnGrp Delay(d),s/veh	65.7	21.3	13.2	59.5	0.0	263.8	161.1	21.0	21.5	65.4	39.7	40.4
LnGrp LOS	E	С	В	E		F	F	С	С	E	D	<u>D</u>
Approach Vol, veh/h		504			956			508			91	
Approach Delay, s/veh		25.1			256.3			132.0			43.1	
Approach LOS		С			F			F			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.3	27.6	6.9	39.6	23.0	9.9	7.5	39.0				
Change Period (Y+Rc), s	* 4.2	4.9	* 4.2	5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), s	* 11	43.3	* 8.8	33.7	* 19	35.1	* 8.8	33.7				
Max Q Clear Time (g_c+l1), s	2.6	4.9	4.0	21.0	20.8	4.3	4.8	35.7				
Green Ext Time (p_c), s	0.0	8.0	0.0	7.2	0.0	8.0	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			159.6									
HCM 2010 LOS			F									
Notes												

Baseline JLB Traffic Engineering, Inc.

	ᄼ	→	•	•	←	•	•	†	~	/	Ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			₽		ሻ	ħβ		7	∱ ∱	
Traffic Volume (veh/h)	81	131	73	66	236	40	111	236	42	63	310	205
Future Volume (veh/h)	81	131	73	66	236	40	111	236	42	63	310	205
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	96	156	87	79	281	48	132	281	50	75	369	244
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	180	255	122	148	396	62	166	907	159	93	534	348
Arrive On Green	0.35	0.35	0.35	0.35	0.35	0.35	0.10	0.32	0.32	0.06	0.28	0.28
Sat Flow, veh/h	280	721	346	206	1120	177	1675	2843	499	1675	1942	1265
Grp Volume(v), veh/h	339	0	0	408	0	0	132	164	167	75	317	296
Grp Sat Flow(s),veh/h/ln	1346	0	0	1502	0	0	1675	1671	1671	1675	1671	1536
Q Serve(g_s), s	0.0	0.0	0.0	1.4	0.0	0.0	4.4	4.2	4.3	2.5	9.6	9.9
Cycle Q Clear(g_c), s	12.0	0.0	0.0	13.3	0.0	0.0	4.4	4.2	4.3	2.5	9.6	9.9
Prop In Lane	0.28		0.26	0.19		0.12	1.00		0.30	1.00		0.82
Lane Grp Cap(c), veh/h	557	0	0	606	0	0	166	533	533	93	460	423
V/C Ratio(X)	0.61	0.00	0.00	0.67	0.00	0.00	0.79	0.31	0.31	0.81	0.69	0.70
Avail Cap(c_a), veh/h	852	0	0	933	0	0	259	763	763	171	667	613
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	15.5	0.0	0.0	16.1	0.0	0.0	25.1	14.6	14.7	26.6	18.5	18.5
Incr Delay (d2), s/veh	1.1	0.0	0.0	1.3	0.0	0.0	8.8	0.3	0.3	15.1	1.8	2.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.7	0.0	0.0	5.8	0.0	0.0	2.4	2.0	2.0	1.6	4.6	4.4
LnGrp Delay(d),s/veh	16.6	0.0	0.0	17.4	0.0	0.0	33.9	15.0	15.0	41.7	20.3	20.7
LnGrp LOS	В			В			С	В	В	D	С	С
Approach Vol, veh/h		339			408			463			688	
Approach Delay, s/veh		16.6			17.4			20.4			22.8	
Approach LOS		В			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.3	24.2		25.4	9.8	21.7		25.4				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 5.8	* 26		33.0	* 8.8	22.7		33.0				
Max Q Clear Time (g_c+I1), s	4.5	6.3		14.0	6.4	11.9		15.3				
Green Ext Time (p_c), s	0.0	5.0		4.5	0.1	3.8		4.3				
Intersection Summary												
HCM 2010 Ctrl Delav			19.9									
HCM 2010 Ctrl Delay HCM 2010 LOS			19.9 B									

Intersection Int Delay, s/veh	5.7					
	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations		NDK	SDL		NVVL	INVVR
Traffic Vol, veh/h	↑ 135	0	0	↑ 165	1 39	1 247
Future Vol, veh/h	135	0	0	165	39	247
Conflicting Peds, #/hr	0	0	0	0	0	0
ğ	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		- -	Yield
Storage Length	_	NOTIC -	_	-	85	0
Veh in Median Storage, i		_	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	33	0	0	33	33	33
Mymt Flow	152	0	0	185	44	278
WWITTE	102	U	U	100	77	270
	ajor1	Λ	Najor2		Minor1	
Conflicting Flow All	0	-	-	-	337	152
Stage 1	-	-	-	-	152	-
Stage 2	-	-	-	-	185	-
Critical Hdwy	-	-	-	-	6.73	6.53
Critical Hdwy Stg 1	-	-	-	-	5.73	-
Critical Hdwy Stg 2	-	-	-	-	5.73	-
Follow-up Hdwy	-	-	-	-	3.797	3.597
Pot Cap-1 Maneuver	-	0	0	-	600	819
Stage 1	-	0	0	-	806	-
Stage 2	-	0	0	-	777	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	600	819
Mov Cap-2 Maneuver	-	-	-	-	600	-
					806	_
Stage 1	-	-	-	-		
Stage 1 Stage 2	-	-	-	-	777	-
	-	-	-	-		-
Stage 2	-	-	SB	-	777	-
Stage 2 Approach	- NB	-	SB 0	-	777 NW	-
Stage 2 Approach HCM Control Delay, s	-	-	SB 0	-	777 NW 11.6	-
Stage 2 Approach	- NB	-			777 NW	
Approach HCM Control Delay, s HCM LOS	- NB	-	0		777 NW 11.6 B	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	- NB	NBTN	0 WLn1N	- IWLn2	777 NW 11.6	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	- NB	-	0 WLn1N 600	- IWLn2 819	777 NW 11.6 B	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	- NB	-	0 WLn1N 600 0.073	IWLn2 819 0.339	777 NW 11.6 B SBT -	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	- NB	-	0 WLn1N 600 0.073 11.5	819 0.339 11.6	777 NW 11.6 B SBT -	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	- NB	-	0 WLn1N 600 0.073	IWLn2 819 0.339	777 NW 11.6 B SBT -	

Intersection												
Int Delay, s/veh	6.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7					4			4	
Traffic Vol, veh/h	5	109	201	0	0	0	20	140	28	40	151	13
Future Vol, veh/h	5	109	201	0	0	0	20	140	28	40	151	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	100	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	16979	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	50	50	50	50	50	50	50	50	50	50	50	50
Mvmt Flow	5	118	218	0	0	0	22	152	30	43	164	14
Major/Minor N	/linor2						Major1			/lajor2		
Conflicting Flow All	447	447	164				164	0	-	152	0	0
Stage 1	251	251	-				-	-	-	-	-	-
Stage 2	196	196	-				-	-	-	-	-	-
Critical Hdwy	6.9	7	6.7				4.6	-	-	4.6	-	-
Critical Hdwy Stg 1	5.9	6	-				-	-	-	-	-	-
Critical Hdwy Stg 2	5.9	6	-				-	-	-	-	-	-
Follow-up Hdwy	3.95	4.45	3.75				2.65	-	-	2.65	-	-
Pot Cap-1 Maneuver	490	442	770				1169	-	0	1182	-	0
Stage 1	691	619	-				-	-	0	-	-	0
Stage 2	735	657	-				-	-	0	-	-	0
Platoon blocked, %								_			-	
Mov Cap-1 Maneuver	461	0	770				1169	-	-	1182	-	-
Mov Cap-2 Maneuver	461	0	-				-	-	-	-	-	-
Stage 1	663	0	-				-	-	-	-	-	-
Stage 2	720	0	-				-	-	-	-	-	-
J												
Approach	EB						NB			SB		
HCM Control Delay, s	13						1			1.7		
HCM LOS	В									1.7		
TIOWI EOS	U											
Minor Lanc/Major Mumb		NBL	NDT	EBLn1	EDI 52	SBL	SBT					
Minor Lane/Major Mymt	l											
Capacity (veh/h)		1169	-	461	770	1182	-					
HCM Cantral Dalay (a)		0.019		0.269			-					
HCM Control Delay (s)		8.1	0	15.7	11.5	8.2	0					
HCM Lane LOS		A	Α	C	В	A	Α					
HCM 95th %tile Q(veh)		0.1	-	1.1	1.2	0.1	-					

	٦	-	*	F	•	←	4	1	†	~	/	
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	*	†	7		Ä	†	7	, N	†	7	*	<u></u>
Traffic Volume (vph)	158	560	45	42	248	295	19	144	383	778	215	111
Future Volume (vph)	158	560	45	42	248	295	19	144	383	778	215	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	1.00	1.00		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1556	1638	1392		1556	3112	1392	1556	1638	1392	1556	1638
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1556	1638	1392		1556	3112	1392	1556	1638	1392	1556	1638
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	178	629	51	47	279	331	21	162	430	874	242	125
RTOR Reduction (vph)	0	0	35	0	0	0	14	0	0	95	0	0
Lane Group Flow (vph)	178	629	16	0	326	331	7	162	430	779	242	125
Heavy Vehicles (%)	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8		5	2		1	6
Permitted Phases			4				8			2		
Actuated Green, G (s)	9.8	35.7	35.7		9.8	35.7	35.7	14.2	42.0	42.0	7.8	35.6
Effective Green, g (s)	9.8	35.7	35.7		9.8	35.7	35.7	14.2	42.0	42.0	7.8	35.6
Actuated g/C Ratio	0.09	0.31	0.31		0.09	0.31	0.31	0.12	0.37	0.37	0.07	0.31
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	132	508	432		132	966	432	192	598	508	105	507
v/s Ratio Prot	0.11	c0.38			c0.21	0.11		0.10	0.26		c0.16	0.08
v/s Ratio Perm			0.01				0.00			c0.56		
v/c Ratio	1.35	1.24	0.04		2.47	0.34	0.02	0.84	0.72	1.53	2.30	0.25
Uniform Delay, d1	52.6	39.6	27.7		52.6	30.6	27.5	49.3	31.4	36.5	53.6	29.7
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	198.5	123.2	0.0		683.5	0.2	0.0	27.2	4.1	250.2	616.0	0.3
Delay (s)	251.1	162.9	27.7		736.1	30.8	27.5	76.5	35.6	286.7	669.6	29.9
Level of Service	F	F	С		F	С	С	Е	D	F	F	С
Approach Delay (s)		173.1				369.8			189.8			358.9
Approach LOS		F				F			F			F
Intersection Summary												
HCM 2000 Control Delay			243.7	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.58									
Actuated Cycle Length (s)			115.0	S	um of los	t time (s)			19.7			
Intersection Capacity Utiliza	tion		122.0%	IC	CU Level	of Service)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	SBR
Lane Configurations	7
Traffic Volume (vph)	92
Future Volume (vph)	92
Ideal Flow (vphpl)	1900
Total Lost time (s)	6.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1392
Flt Permitted	1.00
Satd. Flow (perm)	1392
Peak-hour factor, PHF	0.89
Adj. Flow (vph)	103
RTOR Reduction (vph)	71
Lane Group Flow (vph)	32
Heavy Vehicles (%)	16%
Turn Type	Perm
Protected Phases	L CIIII
Protected Phases Permitted Phases	6
	35.6
Actuated Green, G (s)	
Effective Green, g (s)	35.6
Actuated g/C Ratio	0.31
Clearance Time (s)	6.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	430
v/s Ratio Prot	
v/s Ratio Perm	0.02
v/c Ratio	0.07
Uniform Delay, d1	28.1
Progression Factor	1.00
Incremental Delay, d2	0.1
Delay (s)	28.1
Level of Service	С
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Synchro 9 Report Baseline Page 2

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			† \$			7
Traffic Vol., veh/h	0	1595	537	228	0	67
Future Vol, veh/h	0	1595	537	228	0	67
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	_	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	_
Grade, %	_	0	0	_	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	17	17	3	17	3
Mvmt Flow	0	1734	584	248	0	73
WWW. Tion		1701	001	210		70
		-		_		
	lajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	416
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.945
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	- 3	3.3285
Pot Cap-1 Maneuver	0	-	-	-	0	584
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	584
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
J						
A	ED		IMP		CD	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)				_	584	
HCM Lane V/C Ratio		_	_	_	0.125	
HCM Control Delay (s)					12	
HCM Lane LOS		_	_	_	В	
HCM 95th %tile Q(veh)		_	-	_	0.4	
1.5W 7001 70010 Q(VOII)					0.7	

Intersection													
	145.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		↑	7		4		ሻ		7		र्स	1	
Traffic Vol, veh/h	0	1390	238	4	404	0	12	0	28	101	86	366	
Future Vol, veh/h	0	1390	238	4	404	0	12	0	28	101	86	366	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	Free	-	-	None	-	·-	None	-		Yield	
Storage Length	-	-	60	-	-	-	0	-	45	-	-	55	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94	
Heavy Vehicles, %	0	22	22	22	22	0	22	0	22	22	22	22	
Mvmt Flow	0	1479	253	4	430	0	13	0	30	107	91	389	
Major/Minor N	/lajor1			Major2		<u> </u>	Minor1			Minor2			
Conflicting Flow All	-	0	-	1479	0	0	1963	-	1479	1917	1917	430	
Stage 1	-	_	-	-	-	_	1479	_	-	438	438	-	
Stage 2			_	_	_	_	484	-	_	1479	1479	-	
Critical Hdwy	-	-	-	4.32	-	-	7.32	-	6.42	7.32	6.72	6.42	
Critical Hdwy Stg 1			_	-	_	_	6.32	-	-	6.32	5.72	-	
Critical Hdwy Stg 2	-	-	_	-	-	-	6.32	-	-	6.32	5.72	-	
Follow-up Hdwy	-	-	-	2.398	-	-	3.698	_	3.498	3.698	4.198	3.498	
Pot Cap-1 Maneuver	0	-	0	400	-	0	42	0	139	~ 45	~ 60	585	
Stage 1	0	-	0	-	-	0	141	0	_	560	546	-	
Stage 2	0	-	0	-	-	0	528	0	-	141	172	-	
Platoon blocked, %		-			-								
Mov Cap-1 Maneuver	-	-	-	400	-	-	-	-	139	~ 35	~ 59	585	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	~ 35	~ 59	-	
Stage 1	-	-	-	-	-	-	141	-	-	560	539	-	
Stage 2	-		-	-	-	-	145	-	-	111	172	-	
J													
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0.1					\$	630.7			Ī
HCM LOS	_			***					·	F			
Minor Lane/Major Mvmt	t N	NBLn1 N	JRI n2	EBT	WBL	WRT S	SBLn1	SBI n2					
Capacity (veh/h)	<u> </u>	-	139	-	400	-	43	585					
HCM Lane V/C Ratio			0.214		0.011	_	4.626						
HCM Control Delay (s)		-	37.8	-			1821.2	22.5					
HCM Lane LOS		-	37.0 E	_	14.1 B	A	F	22.5 C					
HCM 95th %tile Q(veh)		-	0.8	-	0	- -	22.8	5					
			0.0		U		22.0	J					
Notes				, .	00	-		N	.			,	
~: Volume exceeds cap	acity	\$: De	elay exc	eeds 30	00s	+: Com	putatio	n Not D	efined	*: All	major	volume i	in plato

	*	-	←	*_	\	4	
Movement	EBL	EBT	WBT	WBR	SEL	SER	
Lane Configurations		4	<u>₩</u>	7		- U_I	
Traffic Volume (veh/h)	762	782	412	403	0	0	
Future Volume (Veh/h)	762	782	412	403	0	0	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Hourly flow rate (vph)	837	859	453	443	0	0	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)			947				
pX, platoon unblocked							
vC, conflicting volume	453				2986	453	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	453				2986	453	
tC, single (s)	4.2				6.5	6.4	
tC, 2 stage (s)							
tF (s)	2.3				3.6	3.4	
p0 queue free %	20				100	100	
cM capacity (veh/h)	1042				3	581	
Direction, Lane #	EB 1	WB 1	WB 2				
Volume Total	1696	453	443	•	•		
Volume Left	837	0	0				
Volume Right	0	0	443				
cSH	1042	1700	1700				
Volume to Capacity	0.80	0.27	0.26				
Queue Length 95th (ft)	226	0	0				
Control Delay (s)	20.8	0.0	0.0				
Lane LOS	С						
Approach Delay (s)	20.8	0.0					
Approach LOS							
Intersection Summary							
Average Delay			13.6				
Intersection Capacity Utiliz	zation		114.9%	IC	U Level c	f Service	
Analysis Period (min)			15				

	<u> </u>	→	•	*	←	•	•	†	~	<u> </u>	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	ĵ»		ሻ	†	7	ሻ	†	7
Traffic Volume (veh/h)	36	736	5	39	480	10	347	66	127	13	17	34
Future Volume (veh/h)	36	736	5	39	480	10	347	66	127	13	17	34
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1557	1557	1557	1557	1557	1900	1557	1557	1557	1557	1557	1557
Adj Flow Rate, veh/h	40	809	5	43	527	11	381	73	140	14	19	37
Adj No. of Lanes	1	1	1	1	1	0	1	1	1	1	1	1
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	22	22	22	22	22	22	22	22	22	22	22	22
Cap, veh/h	53	784	666	55	768	16	271	355	302	24	97	82
Arrive On Green	0.04	0.50	0.50	0.04	0.50	0.50	0.18	0.23	0.23	0.02	0.06	0.06
Sat Flow, veh/h	1483	1557	1324	1483	1520	32	1483	1557	1324	1483	1557	1324
Grp Volume(v), veh/h	40	809	5	43	0	538	381	73	140	14	19	37
Grp Sat Flow(s),veh/h/ln	1483	1557	1324	1483	0	1552	1483	1557	1324	1483	1557	1324
Q Serve(g_s), s	2.3	43.6	0.2	2.5	0.0	22.7	15.8	3.3	7.9	8.0	1.0	2.3
Cycle Q Clear(g_c), s	2.3	43.6	0.2	2.5	0.0	22.7	15.8	3.3	7.9	8.0	1.0	2.3
Prop In Lane	1.00		1.00	1.00		0.02	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	53	784	666	55	0	784	271	355	302	24	97	82
V/C Ratio(X)	0.76	1.03	0.01	0.78	0.00	0.69	1.41	0.21	0.46	0.57	0.20	0.45
Avail Cap(c_a), veh/h	89	784	666	86	0	784	271	770	654	86	575	489
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	41.4	21.5	10.7	41.3	0.0	16.2	35.4	27.1	28.9	42.3	38.6	39.2
Incr Delay (d2), s/veh	19.3	40.6	0.0	20.9	0.0	2.5	204.2	0.3	1.1	19.3	1.0	3.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.2	27.3	0.1	1.3	0.0	10.3	21.7	1.4	3.0	0.5	0.5	0.9
LnGrp Delay(d),s/veh	60.7	62.1	10.7	62.2	0.0	18.8	239.6	27.4	30.0	61.6	39.5	43.0
LnGrp LOS	<u>E</u>	F	В	E	504	В	F	C	С	E	D	<u>D</u>
Approach Vol, veh/h		854			581			594			70	
Approach Delay, s/veh		61.7			22.0			164.1			45.8	
Approach LOS		E			С			F			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.6	24.6	7.4	48.9	20.0	10.3	7.3	49.0				
Change Period (Y+Rc), s	* 4.2	4.9	* 4.2	5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), s	* 5	42.8	* 5	43.6	* 16	32.0	* 5.2	43.4				
Max Q Clear Time (g_c+I1), s	2.8	9.9	4.5	45.6	17.8	4.3	4.3	24.7				
Green Ext Time (p_c), s	0.0	1.1	0.0	0.0	0.0	1.0	0.0	8.6				
Intersection Summary												
HCM 2010 Ctrl Delay			79.2									
HCM 2010 LOS			Е									
Notes												

Baseline
JLB Traffic Engineering, Inc.

	ၨ	→	•	•	←	•	•	†	~	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ ∱		ሻ	∱ ∱	
Traffic Volume (veh/h)	139	239	130	52	146	76	81	514	51	29	333	98
Future Volume (veh/h)	139	239	130	52	146	76	81	514	51	29	333	98
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	145	249	135	54	152	79	84	535	53	30	347	102
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	221	322	159	150	371	171	106	837	83	42	600	174
Arrive On Green	0.44	0.44	0.44	0.44	0.44	0.44	0.06	0.27	0.27	0.03	0.23	0.23
Sat Flow, veh/h	326	737	364	175	848	392	1675	3073	304	1675	2558	741
Grp Volume(v), veh/h	529	0	0	285	0	0	84	290	298	30	225	224
Grp Sat Flow(s),veh/h/ln	1427	0	0	1416	0	0	1675	1671	1706	1675	1671	1628
Q Serve(g_s), s	11.6	0.0	0.0	0.0	0.0	0.0	2.9	8.9	9.0	1.0	6.9	7.1
Cycle Q Clear(g_c), s	18.8	0.0	0.0	7.3	0.0	0.0	2.9	8.9	9.0	1.0	6.9	7.1
Prop In Lane	0.27		0.26	0.19		0.28	1.00		0.18	1.00		0.46
Lane Grp Cap(c), veh/h	702	0	0	692	0	0	106	455	465	42	392	382
V/C Ratio(X)	0.75	0.00	0.00	0.41	0.00	0.00	0.80	0.64	0.64	0.71	0.57	0.59
Avail Cap(c_a), veh/h	916	0	0	907	0	0	281	753	769	109	573	558
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	14.2	0.0	0.0	11.3	0.0	0.0	27.0	18.7	18.7	28.2	19.8	19.8
Incr Delay (d2), s/veh	2.6	0.0	0.0	0.4	0.0	0.0	12.6	1.5	1.5	20.0	1.3	1.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.0	0.0	0.0	3.2	0.0	0.0	1.7	4.3	4.4	0.7	3.3	3.3
LnGrp Delay(d),s/veh	16.8	0.0	0.0	11.7	0.0	0.0	39.6	20.2	20.2	48.2	21.1	21.3
LnGrp LOS	В	=		В			D	C	С	D	C	С
Approach Vol, veh/h		529			285			672			479	
Approach Delay, s/veh		16.8			11.7			22.6			22.9	
Approach LOS		В			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.7	21.9		30.8	7.9	19.7		30.8				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 3.8	* 26		34.7	* 9.8	20.0		34.7				
Max Q Clear Time (g_c+I1), s	3.0	11.0		20.8	4.9	9.1		9.3				_
Green Ext Time (p_c), s	0.0	4.9		4.4	0.1	4.1		5.6				
Intersection Summary												
HCM 2010 Ctrl Delay			19.5									
HCM 2010 LOS			В									
Notes												

Baseline
JLB Traffic Engineering, Inc.

Intersection						
Int Delay, s/veh	3.4					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	†			†	*	7
Traffic Vol., veh/h	349	0	0	82	13	147
Future Vol, veh/h	349	0	0	82	13	147
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	_	None	_	Yield
Storage Length	-	-	-	-	85	0
Veh in Median Storage,	, # 0	-	_	0	0	-
Grade, %	0	-	-	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	24	0	0	24	24	24
Mvmt Flow	375	0	0	88	14	158
WWW.CT IOW	070			00	• •	100
	/lajor1		Major2		Minor1	
Conflicting Flow All	0	-	-	-	463	375
Stage 1	-	-	-	-	375	-
Stage 2	-	-	-	-	88	-
Critical Hdwy	-	-	-	-	6.64	6.44
Critical Hdwy Stg 1	-	-	-	-	5.64	-
Critical Hdwy Stg 2	-	-	-	-	5.64	-
Follow-up Hdwy	-	-	-	-	3.716	3.516
Pot Cap-1 Maneuver	-	0	0	-	519	625
Stage 1	-	0	0	-	649	-
Stage 2	-	0	0	-	883	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	519	625
Mov Cap-2 Maneuver	-	-	-	-	519	-
Stage 1	-	-	-	-	649	-
Stage 2		-	_	-	883	_
21297 =						
A	ND		CD		N.13.6.	
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		12.7	
HCM LOS					В	
Minor Lane/Major Mvm	t	NBTN	IWLn1N	JWLn2	SBT	
Capacity (veh/h)		-	519	625	-	
HCM Lane V/C Ratio		_	0.027		_	
HCM Control Delay (s)		_	12.1	12.7	_	
HCM Lane LOS			12.1 B	12.7 B	-	
HCM 95th %tile Q(veh)			0.1	1	-	
HOW 75th 70the Q(VCH)			U. I			

Intersection												
Int Delay, s/veh	7.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7					4			4	
Traffic Vol, veh/h	5	217	97	0	0	0	12	330	33	34	59	3
Future Vol, veh/h	5	217	97	0	0	0	12	330	33	34	59	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	100	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	16979	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	22	22	22	0	0	0	22	22	22	22	22	22
Mvmt Flow	5	231	103	0	0	0	13	351	35	36	63	3
Major/Minor N	/linor2					ľ	Major1		ľ	Major2		
Conflicting Flow All	512	512	63				63	0	-	351	0	0
Stage 1	135	135	-				-	-	-	-	-	-
Stage 2	377	377	-				-	-	-	-	-	-
Critical Hdwy	6.62	6.72	6.42				4.32	-	-	4.32	-	-
Critical Hdwy Stg 1	5.62	5.72	-				-	-	-	-	-	-
Critical Hdwy Stg 2	5.62	5.72	-				-	-	-	-	-	-
Follow-up Hdwy	3.698	4.198	3.498				2.398	-	-	2.398	-	-
Pot Cap-1 Maneuver	488	438	948				1421	-	0	1105	-	0
Stage 1	844	748	-				-	-	0	-	-	0
Stage 2	652	582	-				-	-	0	-	-	0
Platoon blocked, %								-			-	
Mov Cap-1 Maneuver	466	0	948				1421	-	-	1105	-	-
Mov Cap-2 Maneuver	466	0	-				-	-	-	-	-	-
Stage 1	815	0	-				-	-	-	-	-	-
Stage 2	645	0	-				-	-	-	-	-	-
Approach	EB						NB			SB		
HCM Control Delay, s	17						0.3			3.1		
HCM LOS	C						0.0			0.1		
Minor Lane/Major Mvm	t	NBL	NBT I	EBLn1 I	EBLn2	SBL	SBT					
Capacity (veh/h)		1421	-		948	1105	-					
HCM Lane V/C Ratio		0.009		0.507			_					
HCM Control Delay (s)		7.6	0	20.4	9.3	8.4	0					
HCM Lane LOS		A	Ā	С	A	A	A					
HCM 95th %tile Q(veh)		0	-	2.8	0.4	0.1	-					
2 2 700 2 (1011)					3.1							

Baseline
JLB Traffic Engineering, Inc.
Synchro 9 Report
Page 18

	۶	→	•	F	•	←	•	4	†	/	/	+
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	*	^	7		ሽኘ	^	7	ሻ	↑	77	ሻ	↑
Traffic Volume (vph)	67	193	134	49	735	609	49	31	93	194	215	339
Future Volume (vph)	67	193	134	49	735	609	49	31	93	194	215	339
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	0.95	1.00		0.97	0.95	1.00	1.00	1.00	0.88	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1543	3085	1380		2993	3085	1380	1543	1624	2429	1543	1624
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1543	3085	1380		2993	3085	1380	1543	1624	2429	1543	1624
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	74	214	149	54	817	677	54	34	103	216	239	377
RTOR Reduction (vph)	0	0	125	0	0	0	34	0	0	181	0	0
Lane Group Flow (vph)	74	214	24	0	871	677	20	34	103	35	239	377
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8		5	2		1	6
Permitted Phases			4				8			2		
Actuated Green, G (s)	7.8	14.2	14.2		26.1	32.5	32.5	2.5	14.4	14.4	14.8	26.7
Effective Green, g (s)	7.8	14.2	14.2		26.1	32.5	32.5	2.5	14.4	14.4	14.8	26.7
Actuated g/C Ratio	0.09	0.16	0.16		0.29	0.36	0.36	0.03	0.16	0.16	0.17	0.30
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	134	491	219		875	1124	502	43	262	392	256	486
v/s Ratio Prot	c0.05	0.07			c0.29	c0.22		c0.02	0.06		c0.15	c0.23
v/s Ratio Perm			0.02				0.01			0.01		
v/c Ratio	0.55	0.44	0.11		1.00	0.60	0.04	0.79	0.39	0.09	0.93	0.78
Uniform Delay, d1	39.0	33.9	32.1		31.5	23.1	18.3	43.1	33.5	31.8	36.7	28.5
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	4.9	0.6	0.2		29.1	0.9	0.0	63.1	1.0	0.1	38.4	7.6
Delay (s)	43.9	34.5	32.3		60.6	24.0	18.3	106.2	34.5	31.9	75.1	36.1
Level of Service	D	С	С		Е	С	В	F	С	С	Е	D
Approach Delay (s)		35.3				43.7			39.8			44.9
Approach LOS		D				D			D			D
Intersection Summary												
HCM 2000 Control Delay			42.4 0.83	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa												
Actuated Cycle Length (s)			89.2		um of los				19.7			
Intersection Capacity Utiliza	ation		65.3%	IC	CU Level	of Service)		С			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

Movement	SBR
Lane Configurations	7
Traffic Volume (vph)	166
Future Volume (vph)	166
Ideal Flow (vphpl)	1900
Total Lost time (s)	6.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1380
Flt Permitted	1.00
Satd. Flow (perm)	1380
Peak-hour factor, PHF	0.90
Adj. Flow (vph)	184
RTOR Reduction (vph)	102
Lane Group Flow (vph)	82
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	26.7
Effective Green, g (s)	26.7
Actuated g/C Ratio	0.30
Clearance Time (s)	6.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	413
v/s Ratio Prot	
v/s Ratio Perm	0.06
v/c Ratio	0.20
Uniform Delay, d1	23.3
Progression Factor	1.00
Incremental Delay, d2	0.2
Delay (s)	23.5
Level of Service	C
Approach Delay (s)	J
Approach LOS	
Intersection Summary	

Mitigated Synchro 9 Report JLB Traffic Engineering, Inc. Synchro 9 Report Page 2

	۶	→	•	•	←	•	•	†	~	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻ	44		ሻ		7	7	+	77
Traffic Volume (veh/h)	0	549	108	4	842	0	13	0	17	153	220	783
Future Volume (veh/h)	0	549	108	4	842	0	13	0	17	153	220	783
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1496	1496	1496	1496	0	1496	0	1496	1496	1496	1496
Adj Flow Rate, veh/h	0	610	120	4	936	0	14	0	19	170	244	870
Adj No. of Lanes	0	2	1	1	2	0	1	0	1	1	1	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	0	27	27	27	27	0	27	0	27	27	27	27
Cap, veh/h	0	786	352	95	1178	0	24	0	0	619	541	809
Arrive On Green	0.00	0.28	0.28	0.07	0.41	0.00	0.02	0.00	0.00	0.43	0.36	0.36
Sat Flow, veh/h	0	2917	1272	1425	2917	0	1425	14		1425	1496	2238
Grp Volume(v), veh/h	0	610	120	4	936	0	14	56.8		170	244	870
Grp Sat Flow(s),veh/h/ln	0	1421	1272	1425	1421	0	1425	E		1425	1496	1119
Q Serve(g_s), s	0.0	14.8	4.5	0.2	21.5	0.0	0.7			5.7	9.3	27.0
Cycle Q Clear(g_c), s	0.0	14.8	4.5	0.2	21.5	0.0	0.7			5.7	9.3	27.0
Prop In Lane	0.00		1.00	1.00		0.00	1.00			1.00		1.00
Lane Grp Cap(c), veh/h	0	786	352	95	1178	0	24			619	541	809
V/C Ratio(X)	0.00	0.78	0.34	0.04	0.79	0.00	0.58			0.27	0.45	1.08
Avail Cap(c_a), veh/h	0	1267	567	95	1617	0	95			619	541	809
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	1.00	1.00	0.00	1.00			1.00	1.00	1.00
Uniform Delay (d), s/veh	0.0	24.9	13.9	32.6	19.1	0.0	36.5			13.6	18.2	23.9
Incr Delay (d2), s/veh	0.0	1.7	0.6	0.2	2.0	0.0	20.3			0.2	0.6	54.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	5.9	1.8	0.1	8.6	0.0	0.4			2.3	3.9	14.3
LnGrp Delay(d),s/veh	0.0	26.6	14.4	32.8	21.1	0.0	56.8			13.8	18.8	77.9
LnGrp LOS		C	В	С	C		<u>E</u>			В	B	F
Approach Vol, veh/h		730			940						1284	
Approach Delay, s/veh		24.6			21.1						58.2	
Approach LOS		С			С						Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1		3	4	5	6		8				
Phs Duration (G+Y+Rc), s	38.5		10.3	26.0	5.5	33.0		36.3				
Change Period (Y+Rc), s	6.0		5.3	* 5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	19.9		5.0	* 33	* 5	27.0		42.5				
Max Q Clear Time (g_c+I1), s	7.7		2.2	16.8	2.7	29.0		23.5				
Green Ext Time (p_c), s	4.6		1.6	3.9	0.0	0.0		6.1				
Intersection Summary												
HCM 2010 Ctrl Delay			38.2									
HCM 2010 LOS			D									
Notes												

	>	→	←	*_	\	4			
Movement	EBL	EBT	WBT	WBR	SEL	SER			
Lane Configurations	ሻሻ	^	^	7					
Traffic Volume (veh/h)	307	397	864	108	0	0			
Future Volume (veh/h)	307	397	864	108	0	0			
Number	7	4	8	18					
Initial Q (Qb), veh	0	0	0	0					
Ped-Bike Adj(A_pbT)	1.00			1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00					
Adj Sat Flow, veh/h/ln	1439	1439	1439	1439					
Adj Flow Rate, veh/h	327	422	919	0					
Adj No. of Lanes	2	2	2	1					
Peak Hour Factor	0.94	0.94	0.94	0.94					
Percent Heavy Veh, %	32	32	32	32					
Cap, veh/h	485	2268	1399	626					
Arrive On Green	0.18	0.83	0.51	0.00					
Sat Flow, veh/h	2659	2807	2807	1223					
Grp Volume(v), veh/h	327	422	919	0					
Grp Sat Flow(s),veh/h/ln	1330	1367	1367	1223					
Q Serve(g_s), s	3.6	1.0	7.7	0.0					
Cycle Q Clear(g_c), s	3.6	1.0	7.7	0.0					
Prop In Lane	1.00			1.00					
Lane Grp Cap(c), veh/h	485	2268	1399	626					
V/C Ratio(X)	0.67	0.19	0.66	0.00					
Avail Cap(c_a), veh/h	839	3057	1823	816					
HCM Platoon Ratio	1.00	1.00	1.00	1.00					
Upstream Filter(I)	1.00	1.00	1.00	0.00					
Uniform Delay (d), s/veh	11.8	0.5	5.6	0.0					
Incr Delay (d2), s/veh	1.6	0.0	0.5	0.0					
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0					
%ile BackOfQ(50%),veh/ln	1.4	0.4	2.9	0.0					
LnGrp Delay(d),s/veh	13.5	0.6	6.1	0.0					
LnGrp LOS	В	A	A						
Approach Vol, veh/h		749	919						
Approach Delay, s/veh		6.2	6.1						
Approach LOS		Α	А						
Timer	1	2	3	4	5	6	7	8	
Assigned Phs				4			7	8	
Phs Duration (G+Y+Rc), s				31.0			9.9	21.2	
Change Period (Y+Rc), s				5.3			* 4.2	5.3	
Max Green Setting (Gmax), s				34.7			* 9.8	20.7	
Max Q Clear Time (g_c+l1), s				3.0			5.6	9.7	
Green Ext Time (p_c), s				10.8			0.5	6.2	
4 – <i>7</i>								- · -	
Intersection Summary HCM 2010 Ctrl Dolay			6.2						
HCM 2010 Ctrl Delay HCM 2010 LOS			6.2 A						
			А						
Notes									

Mitigated
JLB Traffic Engineering, Inc.

Synchro 9 Report Page 8

	۶	→	•	•	←	•	•	†	~	/		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ ∱		ሻ	ħβ		ሻሻ		7			7
Traffic Volume (veh/h)	39	345	24	28	719	27	326	37	49	9	35	30
Future Volume (veh/h)	39	345	24	28	719	27	326	37	49	9	35	30
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1439	1439	1900	1439	1439	1900	1439	1439	1439	1439	1439	1439
Adj Flow Rate, veh/h	48	426	30	35	888	33	402	46	60	11	43	37
Adj No. of Lanes	1	2	0	1	2	0	2	1	1	1	1	1
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, %	32	32	32	32	32	32	32	32	32	32	32	32
Cap, veh/h	62	578	41	278	1071	40	496	358	305	19	110	94
Arrive On Green	0.05	0.22	0.22	0.20	0.40	0.40	0.19	0.25	0.25	0.01	0.08	0.08
Sat Flow, veh/h	1371	2593	182	1371	2689	100	2659	1439	1223	1371	1439	1223
Grp Volume(v), veh/h	48	224	232	35	452	469	402	46	60	11	43	37
Grp Sat Flow(s),veh/h/ln	1371	1367	1407	1371	1367	1422	1330	1439	1223	1371	1439	1223
Q Serve(g_s), s	2.2	9.6	9.7	1.3	18.8	18.8	9.2	1.6	1.3	0.5	1.8	1.8
Cycle Q Clear(g_c), s	2.2	9.6	9.7	1.3	18.8	18.8	9.2	1.6	1.3	0.5	1.8	1.8
Prop In Lane	1.00		0.13	1.00		0.07	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	62	305	314	278	545	566	496	358	305	19	110	94
V/C Ratio(X)	0.78	0.73	0.74	0.13	0.83	0.83	0.81	0.13	0.20	0.58	0.39	0.40
Avail Cap(c_a), veh/h	110	700	720	278	728	757	655	968	823	108	727	618
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.9	22.9	22.9	20.6	17.1	17.1	24.7	18.4	5.0	31.0	27.8	27.8
Incr Delay (d2), s/veh	18.6	3.4	3.4	0.2	6.0	5.8	5.8	0.2	0.3	24.7	2.2	2.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	3.9	4.0	0.5	7.9	8.2	3.7	0.6	0.8	0.3	0.8	0.7
LnGrp Delay(d),s/veh	48.5	26.3	26.3	20.8	23.1	22.9	30.4	18.6	5.3	55.8	30.1	30.5
LnGrp LOS	D	C	С	С	C	С	С	В	A	E	C	С
Approach Vol, veh/h		504			956			508			91	
Approach Delay, s/veh		28.4			22.9			26.4			33.4	
Approach LOS		С			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.1	20.7	18.2	19.4	16.0	9.7	7.1	30.5				
Change Period (Y+Rc), s	* 4.2	4.9	5.3	* 5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), s	* 5	42.6	6.4	* 32	* 16	32.0	* 5.1	33.7				
Max Q Clear Time (g_c+I1), s	2.5	3.6	3.3	11.7	11.2	3.8	4.2	20.8				
Green Ext Time (p_c), s	0.0	0.8	1.6	2.4	0.6	0.8	0.0	4.4				
Intersection Summary												
HCM 2010 Ctrl Delay			25.6									
HCM 2010 LOS			C									
Notes												

Mitigated
JLB Traffic Engineering, Inc.

	۶	→	•	F	•	←	•	4	†	~	\	Ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	^	7		ሕ ሽ	^	7	ň	^	77	7	†
Traffic Volume (vph)	158	560	45	42	248	295	19	144	383	778	215	111
Future Volume (vph)	158	560	45	42	248	295	19	144	383	778	215	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	0.95	1.00		0.97	0.95	1.00	1.00	1.00	0.88	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1556	3112	1392		3019	3112	1392	1556	1638	2450	1556	1638
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1556	3112	1392		3019	3112	1392	1556	1638	2450	1556	1638
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	178	629	51	47	279	331	21	162	430	874	242	125
RTOR Reduction (vph)	0	0	37	0	0	0	15	0	0	242	0	0
Lane Group Flow (vph)	178	629	14	0	326	331	6	162	430	633	242	125
Heavy Vehicles (%)	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%	16%
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8		5	2		1	6
Permitted Phases			4				8			2		
Actuated Green, G (s)	14.9	30.8	30.8		15.7	31.6	31.6	32.5	35.5	35.5	14.3	17.3
Effective Green, g (s)	14.9	30.8	30.8		15.7	31.6	31.6	32.5	35.5	35.5	14.3	17.3
Actuated g/C Ratio	0.13	0.27	0.27		0.14	0.27	0.27	0.28	0.31	0.31	0.12	0.15
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	199	826	369		408	847	379	435	501	749	191	244
v/s Ratio Prot	c0.11	c0.20			c0.11	0.11		0.10	c0.26		c0.16	0.08
v/s Ratio Perm			0.01				0.00			0.26		
v/c Ratio	0.89	0.76	0.04		0.80	0.39	0.02	0.37	0.86	0.84	1.27	0.51
Uniform Delay, d1	49.8	39.2	31.6		48.6	34.4	30.8	33.6	37.9	37.7	50.9	45.5
Progression Factor	1.00	1.00	1.00		0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	36.0	6.6	0.2		10.1	1.3	0.1	0.5	13.6	8.6	154.9	1.8
Delay (s)	85.7	45.8	31.8		58.0	35.8	30.9	34.1	51.5	46.3	205.7	47.3
Level of Service	F	D	С		Е	D	С	С	D	D	F	D
Approach Delay (s)		53.2				46.4			46.5			127.8
Approach LOS		D				D			D			F
Intersection Summary												
HCM 2000 Control Delay			59.1	H	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	city ratio		0.88									
Actuated Cycle Length (s)			116.0	Sı	um of lost	time (s)			19.7			
Intersection Capacity Utiliza	ation		79.3%	IC	CU Level	of Service	;		D			
Analysis Period (min)			15									
c Critical Lane Group												

MovementSBRLane Configurations7Traffic Volume (vph)92Future Volume (vph)92
Traffic Volume (vph) 92
Future Volume (vnh) 92
ratare volume (vpm)
Ideal Flow (vphpl) 1900
Total Lost time (s) 6.0
Lane Util. Factor 1.00
Frt 0.85
Flt Protected 1.00
Satd. Flow (prot) 1392
Flt Permitted 1.00
Satd. Flow (perm) 1392
Peak-hour factor, PHF 0.89
Adj. Flow (vph) 103
RTOR Reduction (vph) 88
Lane Group Flow (vph) 15
Heavy Vehicles (%) 16%
Turn Type Perm
Protected Phases
Permitted Phases 6
Actuated Green, G (s) 17.3
Effective Green, g (s) 17.3
Actuated g/C Ratio 0.15
Clearance Time (s) 6.0
Vehicle Extension (s) 3.0
Lane Grp Cap (vph) 207
v/s Ratio Prot
v/s Ratio Perm 0.01
v/c Ratio 0.07
Uniform Delay, d1 42.5
Progression Factor 1.00
Incremental Delay, d2 0.2
Delay (s) 42.6
Level of Service D
Approach Delay (s)
Approach LOS Intersection Summary

Mitigated Synchro 9 Report JLB Traffic Engineering, Inc. Synchro 9 Report Page 2

	۶	→	•	•	←	•	•	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻ	^		ሻ		7	ሻ		77
Traffic Volume (veh/h)	0	1390	238	4	404	0	12	0	28	101	86	366
Future Volume (veh/h)	0	1390	238	4	404	0	12	0	28	101	86	366
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1557	1557	1557	1557	0	1557	0	1557	1557	1557	1557
Adj Flow Rate, veh/h	0	1479	253	4	430	0	13	0	30	107	91	389
Adj No. of Lanes	0	2	1	1	2	0	1	0	1	1	1	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	22	22	22	22	0	22	0	22	22	22	22
Cap, veh/h	0	1852	828	107	2172	0	21	0	0	287	223	333
Arrive On Green	0.00	0.83	0.83	0.14	1.00	0.00	0.01	0.00	0.00	0.19	0.14	0.14
Sat Flow, veh/h	0	3037	1324	1483	3037	0	1483	13		1483	1557	2330
Grp Volume(v), veh/h	0	1479	253	4	430	0	13	81.7		107	91	389
Grp Sat Flow(s),veh/h/ln	0	1480	1324	1483	1480	0	1483	F		1483	1557	1165
Q Serve(g_s), s	0.0	29.0	5.0	0.3	0.0	0.0	1.0			7.3	6.2	16.6
Cycle Q Clear(g_c), s	0.0	29.0	5.0	0.3	0.0	0.0	1.0			7.3	6.2	16.6
Prop In Lane	0.00		1.00	1.00		0.00	1.00			1.00		1.00
Lane Grp Cap(c), veh/h	0	1852	828	107	2172	0	21			287	223	333
V/C Ratio(X)	0.00	0.80	0.31	0.04	0.20	0.00	0.61			0.37	0.41	1.17
Avail Cap(c_a), veh/h	0	1852	828	107	2172	0	64			287	223	333
HCM Platoon Ratio	1.00	1.33	1.33	2.00	2.00	1.00	1.00			1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.97	0.97	0.00	1.00			1.00	1.00	1.00
Uniform Delay (d), s/veh	0.0	6.1	4.1	46.2	0.0	0.0	56.8			40.6	45.2	49.7
Incr Delay (d2), s/veh	0.0	3.7	1.0	0.1	0.2	0.0	24.9			0.8	1.2	102.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	12.2	2.0	0.1	0.1	0.0	0.6			3.0	2.7	10.1
LnGrp Delay(d),s/veh	0.0	9.8	5.0	46.4	0.2	0.0	81.7			41.4	46.4	152.3
LnGrp LOS		Α	A	D	Α		F			D	D	F
Approach Vol, veh/h		1732			434						587	
Approach Delay, s/veh		9.1			0.6						115.7	
Approach LOS		А			А						F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1		3	4	5	6		8				
Phs Duration (G+Y+Rc), s	26.7		12.5	76.8	5.9	20.8		89.3				
Change Period (Y+Rc), s	4.2		* 4.2	* 4.2	* 4.2	* 4.2		* 4.2				
Max Green Setting (Gmax), s	14.8		* 5	* 73	* 5	* 17		* 82				
Max Q Clear Time (g_c+I1), s	9.3		2.3	31.0	3.0	18.6		2.0				
Green Ext Time (p_c), s	0.1		0.7	16.6	0.0	0.0		2.9				
Intersection Summary												
HCM 2010 Ctrl Delay			30.7									
HCM 2010 LOS			С									
Notes												

	>	→	←	*_	\	4			
Movement	EBL	EBT	WBT	WBR	SEL	SER			
Lane Configurations	ሻሻ	^	^	7					
Traffic Volume (veh/h)	762	782	412	403	0	0			
uture Volume (veh/h)	762	782	412	403	0	0			
lumber	7	4	8	18					
nitial Q (Qb), veh	0	0	0	0					
Ped-Bike Adj(A_pbT)	1.00			1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00					
Adj Sat Flow, veh/h/ln	1652	1652	1652	1652					
Adj Flow Rate, veh/h	837	859	453	443					
dj No. of Lanes	2	2	2	1					
Peak Hour Factor	0.91	0.91	0.91	0.91					
Percent Heavy Veh, %	15	15	15	15					
Cap, veh/h	922	2852	1677	750					
Arrive On Green	0.60	1.00	0.53	0.53					
Sat Flow, veh/h	3053	3222	3222	1404					
Grp Volume(v), veh/h	837	859	453	443					
Grp Sat Flow(s),veh/h/ln	1526	1570	1570	1404					
2 Serve(g_s), s	13.9	0.0	4.6	12.4					
Cycle Q Clear(g_c), s	13.9	0.0	4.6	12.4					
rop In Lane	1.00			1.00					
ane Grp Cap(c), veh/h	922	2852	1677	750					
//C Ratio(X)	0.91	0.30	0.27	0.59					
Avail Cap(c_a), veh/h	1095	2852	1677	750					
ICM Platoon Ratio	2.00	2.00	1.00	1.00					
Jpstream Filter(I)	0.62	0.62	1.00	1.00					
Jniform Delay (d), s/veh	10.8	0.0	7.4	9.2					
ncr Delay (d2), s/veh	6.5	0.2	0.4	3.4					
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0					
%ile BackOfQ(50%),veh/ln	6.4	0.1	2.0	5.5					
_nGrp Delay(d),s/veh	17.3	0.2	7.8	12.6					
_nGrp LOS	В	Α	Α	В					
Approach Vol, veh/h		1696	896						
Approach Delay, s/veh		8.6	10.1						
pproach LOS		Α	В						
Гimer	1	2	3	4	5	6	7	8	
Assigned Phs				4		0	7	8	
Phs Duration (G+Y+Rc), s				58.0			21.7	36.3	
Change Period (Y+Rc), s				5.3			* 4.2	5.3	
Max Green Setting (Gmax), s				52.7			* 21	27.7	
Max Q Clear Time (g_c+l1), s				2.0			15.9	14.4	
Green Ext Time (p_c), s				14.6			1.6	8.0	
				17.0			1.0	0.0	
ntersection Summary									
ICM 2010 Ctrl Delay			9.1						
ICM 2010 LOS			Α						
lotes									

Mitigated
JLB Traffic Engineering, Inc.

	۶	→	•	•	←	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ β		ሻ	ħβ		ሻሻ	↑	7	7	↑	7
Traffic Volume (veh/h)	36	736	5	39	480	10	347	66	127	13	17	34
Future Volume (veh/h)	36	736	5	39	480	10	347	66	127	13	17	34
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1557	1557	1900	1557	1557	1900	1557	1557	1557	1557	1557	1557
Adj Flow Rate, veh/h	40	809	5	43	527	11	381	73	140	14	19	37
Adj No. of Lanes	1	2	0	1	2	0	2	1	1	1	1	1
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	22	22	22	22	22	22	22	22	22	22	22	22
Cap, veh/h	632	1844	11	51	624	13	433	277	235	23	67	57
Arrive On Green	0.43	0.61	0.61	0.03	0.21	0.21	0.15	0.18	0.18	0.02	0.04	0.04
Sat Flow, veh/h	1483	3015	19	1483	2964	62	2877	1557	1324	1483	1557	1324
Grp Volume(v), veh/h	40	397	417	43	263	275	381	73	140	14	19	37
Grp Sat Flow(s),veh/h/ln	1483	1480	1554	1483	1480	1546	1439	1557	1324	1483	1557	1324
Q Serve(g_s), s	1.8	16.5	16.5	3.3	19.8	19.8	15.0	4.7	11.3	1.1	1.4	1.5
Cycle Q Clear(g_c), s	1.8	16.5	16.5	3.3	19.8	19.8	15.0	4.7	11.3	1.1	1.4	1.5
Prop In Lane	1.00		0.01	1.00		0.04	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	632	905	951	51	312	326	433	277	235	23	67	57
V/C Ratio(X)	0.06	0.44	0.44	0.84	0.84	0.84	0.88	0.26	0.59	0.60	0.28	0.65
Avail Cap(c_a), veh/h	632	905	951	75	478	500	491	628	534	64	430	365
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.90	0.90	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	19.6	12.0	12.0	55.7	44.0	44.0	48.3	41.1	43.8	56.7	53.8	11.7
Incr Delay (d2), s/veh	0.0	1.5	1.5	36.0	21.6	20.9	15.4	0.5	2.4	22.6	2.3	11.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.8	7.1	7.5	1.9	10.0	10.4	6.9	2.1	4.3	0.6	0.6	0.7
LnGrp Delay(d),s/veh	19.7	13.5	13.4	91.7	65.5	64.9	63.7	41.6	46.2	79.3	56.0	23.4
LnGrp LOS	В	В	В	F	E	E	E	D	D	E	E	С
Approach Vol, veh/h		854			581			594			70	
Approach Delay, s/veh		13.8			67.2			56.9			43.5	
Approach LOS		В			Е			Е			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.0	25.5	8.2	76.2	21.6	9.9	54.7	29.7				
Change Period (Y+Rc), s	* 4.2	4.9	* 4.2	5.3	* 4.2	4.9	5.3	* 5.3				
Max Green Setting (Gmax), s	* 5	46.8	* 5.9	39.7	* 20	32.0	8.1	* 38				
Max Q Clear Time (g_c+I1), s	3.1	13.3	5.3	18.5	17.0	3.5	3.8	21.8				
Green Ext Time (p_c), s	0.0	1.1	0.0	4.8	0.4	1.1	1.9	2.6				
Intersection Summary												
HCM 2010 Ctrl Delay			41.7									
HCM 2010 LOS			D									
Notes												

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	T	R	UL	L	T	T	R	L	Т	R
Maximum Queue (ft)	163	155	114	165	228	270	365	277	220	69	167	133
Average Queue (ft)	64	80	56	64	224	267	315	165	22	30	63	54
95th Queue (ft)	124	144	108	130	234	289	381	264	110	64	119	96
Link Distance (ft)		2618	2618				277	277			1956	
Upstream Blk Time (%)						18	40	0				
Queuing Penalty (veh)						0	290	3				
Storage Bay Dist (ft)	250			250	185	185			100	150		150
Storage Blk Time (%)					33	55	1	18			1	0
Queuing Penalty (veh)					102	167	9	9			2	0

Intersection: 1: Orange Avenue & North Avenue

Movement	NB	SB	SB	SB
Directions Served	R	L	T	R
Maximum Queue (ft)	82	175	1059	245
Average Queue (ft)	29	125	336	78
95th Queue (ft)	60	212	773	207
Link Distance (ft)			3209	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	150	100		130
Storage Blk Time (%)		25	29	
Queuing Penalty (veh)		124	111	

Intersection: 2: North Avenue & Driveway

Movement	WB	WB	SB
Directions Served	T	TR	R
Maximum Queue (ft)	468	439	142
Average Queue (ft)	388	145	118
95th Queue (ft)	572	429	167
Link Distance (ft)	439	439	127
Upstream Blk Time (%)	9	0	85
Queuing Penalty (veh)	75	0	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	SB	SB
Directions Served	T	T	R	L	T	T	L	R	L	T	R	R
Maximum Queue (ft)	310	254	114	8	501	365	106	65	191	1104	420	360
Average Queue (ft)	188	100	35	0	179	144	11	20	90	440	338	274
95th Queue (ft)	303	211	81	3	382	282	50	53	156	1067	485	441
Link Distance (ft)	439	439			703	703	2368			1041		
Upstream Blk Time (%)										6		
Queuing Penalty (veh)										0		
Storage Bay Dist (ft)			60	150				45	300		300	300
Storage Blk Time (%)		15	2		14		1	7		1	24	2
Queuing Penalty (veh)		17	7		1		0	1		8	89	9

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	WB	WB	WB
Directions Served	L	L	T	Т	T	T	R
Maximum Queue (ft)	160	199	23	42	179	201	83
Average Queue (ft)	69	106	1	1	86	81	7
95th Queue (ft)	123	174	8	14	152	158	40
Link Distance (ft)			703	703	377	377	
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	250	250					85
Storage Blk Time (%)						4	0
Queuing Penalty (veh)						4	0

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	L	T	R	L	T
Maximum Queue (ft)	130	182	187	130	371	232	205	295	67	78	47	130
Average Queue (ft)	41	56	85	39	137	107	104	114	26	36	7	35
95th Queue (ft)	89	122	158	91	251	199	172	191	63	71	31	89
Link Distance (ft)		467	467						609			1306
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	150			150			180	180		180	155	
Storage Blk Time (%)		0		0	7		0	0				
Queuing Penalty (veh)		0		0	2		0	0				

Intersection: 5: Cedar Avenue & North Ave

Movement	SB
Directions Served	R
Maximum Queue (ft)	99
Average Queue (ft)	24
95th Queue (ft)	68
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	355
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	LTR	LTR	L	T	TR	L	T	TR	
Maximum Queue (ft)	217	265	138	115	117	116	199	198	
Average Queue (ft)	109	138	76	46	61	42	67	99	
95th Queue (ft)	186	232	126	85	107	82	120	167	
Link Distance (ft)		4573		5304	5304		5297	5297	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)			245			150			
Storage Blk Time (%)							0		
Queuing Penalty (veh)							0		

Intersection: 7: Cedar Avenue & SR 99 NB Off-Ramp

Movement	NW	NW
Directions Served	L	R
Maximum Queue (ft)	55	236
Average Queue (ft)	26	41
95th Queue (ft)	56	149
Link Distance (ft)		1717
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	85	
Storage Blk Time (%)		4
Queuing Penalty (veh)		2

Intersection: 8: Cedar Avenue & Parkway Drive/SR 99 SB On-Ramp

Movement	EB	EB	NB	SB	
Directions Served	LT	R	LTR	LTR	
Maximum Queue (ft)	101	172	104	107	
Average Queue (ft)	55	66	17	20	
95th Queue (ft)	92	141	72	69	
Link Distance (ft)	2368		3449	1087	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		100			
Storage Blk Time (%)	0	3			
Queuing Penalty (veh)	1	4			

Intersection: 14: North Ave

Movement	
Directions Served	
Maximum Queue (ft)	
Average Queue (ft)	
95th Queue (ft)	
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Network wide Queuing Penalty: 1037

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	Т	T	R	UL	L	T	T	R	L	T	R
Maximum Queue (ft)	366	518	491	87	218	225	224	176	50	249	766	400
Average Queue (ft)	174	219	199	26	100	121	84	87	6	120	272	214
95th Queue (ft)	304	355	324	58	179	193	157	150	24	252	529	344
Link Distance (ft)		2618	2618				277	277			1956	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			250	185	185			100	150		150
Storage Blk Time (%)	1	4	3		1	3	0	7		2	26	19
Queuing Penalty (veh)	2	6	1		2	5	1	1		24	244	100

Intersection: 1: Orange Avenue & North Avenue

Movement	NB	SB	SB	SB
Directions Served	R	L	T	R
Maximum Queue (ft)	268	175	1900	245
Average Queue (ft)	149	172	908	111
95th Queue (ft)	256	185	1739	293
Link Distance (ft)			3209	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	150	100		130
Storage Blk Time (%)	5	84	16	
Queuing Penalty (veh)	28	170	50	

Intersection: 2: North Avenue & Driveway

Movement	SB
Directions Served	R
Maximum Queue (ft)	74
Average Queue (ft)	31
95th Queue (ft)	52
Link Distance (ft)	127
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	SB	SB
Directions Served	T	T	R	L	T	T	L	R	L	Ţ	R	R
Maximum Queue (ft)	360	278	260	4	166	39	102	75	188	152	122	92
Average Queue (ft)	211	117	37	0	18	4	19	36	85	73	67	47
95th Queue (ft)	335	237	119	2	81	22	63	71	149	134	110	80
Link Distance (ft)	439	439			703	703	2368			1041		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)			60	150				45	300		300	300
Storage Blk Time (%)		16	2		0		3	27				
Queuing Penalty (veh)		38	11		0		1	3				

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	EB	EB	WB	WB	WB
Directions Served	L	L	T	T	Т	R
Maximum Queue (ft)	309	368	422	175	370	334
Average Queue (ft)	159	173	14	61	83	132
95th Queue (ft)	276	325	139	130	216	247
Link Distance (ft)			703	372	372	
Upstream Blk Time (%)					0	
Queuing Penalty (veh)					1	
Storage Bay Dist (ft)	250	250				85
Storage Blk Time (%)	1	3			3	12
Queuing Penalty (veh)	4	12			13	26

Intersection: 5: Cedar Avenue & North Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	NB	SB	SB
Directions Served	L	Т	TR	L	T	TR	L	L	Т	R	L	T
Maximum Queue (ft)	100	249	210	144	201	217	239	299	476	111	106	71
Average Queue (ft)	25	126	113	38	80	98	118	186	102	47	25	20
95th Queue (ft)	69	220	189	85	175	194	214	296	284	90	71	56
Link Distance (ft)		467	467		2575	2575			609			1307
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	150			150			180	180		180	155	
Storage Blk Time (%)		6		0	1		0	14				
Queuing Penalty (veh)		2		0	0		1	27				

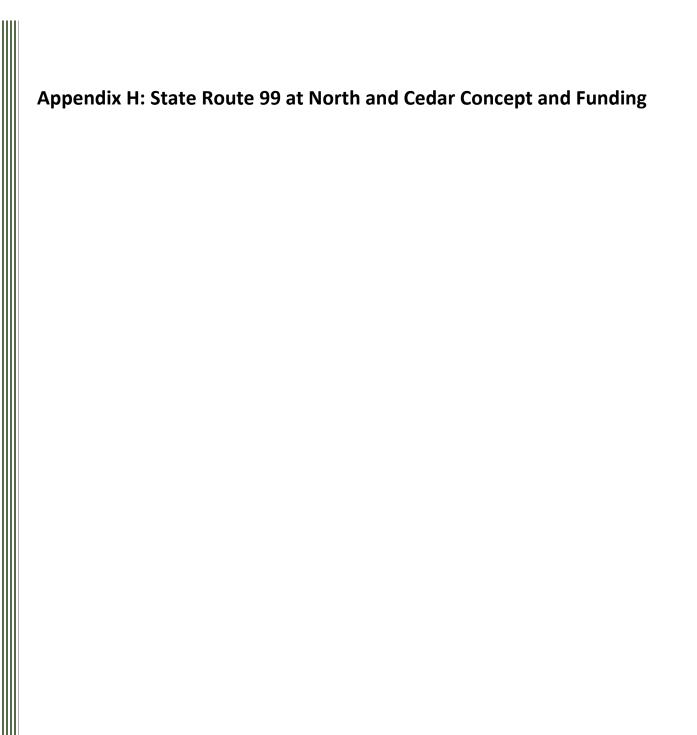
Intersection: 5: Cedar Avenue & North Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	71
Average Queue (ft)	23
95th Queue (ft)	53
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	355
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 6: Chestnut Ave & North Avenue

Movement	EB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	LTR	LTR	L	T	TR	L	T	TR	
Maximum Queue (ft)	858	286	197	180	214	59	151	154	
Average Queue (ft)	317	136	64	100	127	22	76	92	
95th Queue (ft)	643	260	124	161	191	51	125	150	
Link Distance (ft)	2533	4573		5304	5304		5286	5286	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)			245			150			
Storage Blk Time (%)							0		
Queuing Penalty (veh)							0		

Intersection: 7: Cedar Avenue & SR 99 NB Off-Ramp


Movement	NW	NW
Directions Served	L	R
Maximum Queue (ft)	41	108
Average Queue (ft)	6	10
95th Queue (ft)	26	53
Link Distance (ft)		1717
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	85	
Storage Blk Time (%)		1
Queuing Penalty (veh)		0

Intersection: 8: Cedar Avenue & Parkway Drive/SR 99 SB On-Ramp

Movement	EB	EB	NB	SB	
Directions Served	LT	R	LTR	LTR	
Maximum Queue (ft)	151	75	155	49	
Average Queue (ft)	65	8	24	12	
95th Queue (ft)	117	41	97	37	
Link Distance (ft)	2368		3449	1087	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		100			
Storage Blk Time (%)	2				
Queuing Penalty (veh)	2				

Network Summary

Network wide Queuing Penalty: 773

Page | H

EXHIBIT 6-6

CAPACITY INCREASING PROJECT LIST

2010 THROUGH 2035

		OTIDO			U35 I											
Agency	TIP/RTP	CTIPS Project ID		Description		Estimated Cost	С	onformi	ty Analy	/sis Yea	ır (proje	ct open	to traff	ic)	Complete	
	Project		Type of	Facility			0044	0040								
	ID		Improvement 2 lanes to 4 lanes	Name/Route	Project Limits		2011	2012	2014	2017	2020	2023	2025	2035	Date	
Kingsburg	1062		2 LU to 4 LU	18th 18th	Mountain View to Stroud Stroud ave. to	\$1,875,000.00							х	х	2025	
Kingsburg	924		New 4 lane	Avenue/Mendocino	SR 99 Mountain View	\$682,000.00				Х	х	х	х	х	2015	
Kingsburg	1066		Expressway 2 LU to 4 LD	Academy Parkway	to Simpson	\$4,500,000.00					Х	х	х	Х	2020	
City of Fresno County of	933		2 LU to 4 LD	American	Orange to Maple	\$1,200,000.00							Х	Х	2030	
Fresno	1075		3 LD to 4 LD Incl Median Landscaping, some portions already	American	SR 41 to SR 99 Armstrong to	\$6,500,000.00							Х	Х	2030	
Clovis	400	20300000555	exist as 4LD 3 LU to 4 LD	Ashlan	Temperance Dewolf to	\$1,100,000.00	х	х	Х	Х	х	х	х	Х	2010	
Clovis	305		2 LU to 4 LD	Ashlan	Leonard Leonard to	\$1,100,000.00				Х	Х	Х	Х	Х	2015	
Clovis	303		2 LD to 4 LD	Ashlan	Highland Cornelia to	\$5,600,000.00				Х	Х	Х	Х	Х	2015	
City of Fresno	195	20300000566	2LU to 4LD	Ashlan	Blythe Highland to	\$650,000.00				Х	Х	Х	Х	Х	2015	
Clovis	304		2 LU to 4 LD	Ashlan	Thompson	\$2,800,000.00					Х	Х	Х	Х	2018	
City of Fresno	196		Unconstructed to 4	Ashlan	Polk to Cornelia Garfield to	\$750,000.00					Х	Х	Х	Х	2020	
City of Fresno	940		LD 2LD to 4 LD	Ashlan	Grantland	\$1,000,000.00					X	X	X	X	2020	
City of Fresno	106		2LU to 4LD	Ashlan	Bryan to Polk Thompson to	\$1,350,000.00					X	X	X	X	2020	
Clovis	306		2 L to 4 LD	Ashlan	McCall Grantland to	\$2,800,000.00					Х	Х	Х	Х	2020	
City of Fresno	108		Interchange Improvements	Ashlan	Bryan Grade separation @ UPRR & SR 99	\$650,000.00							Х	Х	2025	
Caltrans County of	208		2 LU to 4 LD	Ashlan	interchange Copper to	\$7,600,000.00								Х	2035	
Fresno	564		3 LD to 4 LD (add	Auberry	Millerton (W)	\$51,050,000.00							Х	Х	2030	
City of Fresno	210		WB Lane) 3 LU to 4 LD (add	Belmont	Clovis to Fowler Fowler to	\$1,700,000.00		х	Х	Х	х	х	х	Х	2012	
City of Fresno	256		WB lane) 2 LU & 4LU to 4 LD	Belmont	Armstrong Brawley to SR	\$500,000.00					х	х	х	Х	2020	
City of Fresno	255		2 LU to 4 LD	Belmont	99 Armstrong to	\$1,700,000.00							х	Х	2025	
City of Fresno	249			Belmont	Temperance	\$900,000.00							Х	Х	2025	

Financial Element Page 6-49

2011 Regional Tra	nsportation	Plan		(Council of Fresno Cou	inty Governments	_		_	_	_			
			incomplete portions											
Clovis	1088		2 LU to 4 LD Complete incomplete portions 2 LU to 4 LD	Nees	Sunnyside to Fowler	\$2,000,000.00				х	х	x	х	2018
Clovis	1089		complete incomplete portions Unconstructed to 4	Nees	Fowler to Armstrong Locan to Alluvial	\$2,500,000.00				х	х	х	х	2018
Clovis	345		LD 2 LU to 4 LU	Nees	Alignemnt Cedar to	\$3,000,000.00				х	х	х	Х	2020
City of Fresno	239			North	Chestnut	\$1,500,000.00				х	х	х	Х	2020
City of Fresno	994		2 LU to 4 LD,	North	Walnut to Hwy 41	\$2,500,000.00				х	х	х	х	2020
City of Fresno	<mark>261</mark>		improve SR 99 interchange 2 LU to 4 LD	North	Orange to Cedar Kings Canyon to	\$12,500,000.00						X	X	2030
City of Fresno	192		2 LU to 4 LD	Peach	Belmont	\$10,000,000.00			Х	Х	Х	Х	Х	2015
City of Fresno	193		2 LU to 4 LD	Peach	Jensen to Butler Gettysburg to	\$1,500,000.00				Х	Х	Х	Х	2020
City of Fresno	131		Unconstructed to 4	Polk	Shaw	\$5,000,000.00			Х	Х	Х	Х	Х	2015
City of Fresno	913		LD 2 LD to 4 LD	Polk	Olive to Belmont Olive to	\$1,000,000.00			Х	х	Х	Х	Х	2015
City of Fresno	1001		2 LU to 4 LD	Polk	McKinley Shields to	\$500,000.00			х	х	х	х	Х	2015
City of Fresno	161		2 LU to 4 LD	Polk	Gettysburg McKinley to	\$1,500,000.00						х	Х	2025
City of Fresno	220		2 LU to 4 LD	Polk	Shields I Street to South	\$1,000,000.00						х	Х	2025
Reedley	676	20300000417	2 LD to 4 LD	Reed	Ave Reedley City	\$5,000,000.00	Х	X	Х	Х	Х	Х	Х	2013
County of Fresno	556		ALD to CLD	Reed	Limit(South ave.) to Goodfellow	\$6,000,000.00						х	х	2030
Clovis	392	20300000559	4 LD to 6 LD	Shaw	Clovis to Temperance	\$311,000.00	Х	Х	х	х	х	х	Х	2012
Clovis	412		4 LU to 6 LD 2 LU to 6 LD	Shaw	Carson to Locan	\$850,000.00	Х	X	х	х	Х	Х	Х	2012
Clovis	908		2 LU to 6 LD	Shaw	Locan to Main Highland to	\$1,700,000.00	Х	X	Х	х	Х	Х	Х	2012
Clovis	354		2 LU 6 LD	Shaw	McCall DeWolf to	\$7,000,000.00			Х	Х	Х	Х	Х	2015
Clovis	931		4 LD to 6 LD	Shaw	Highland SR 99 to	\$7,000,000.00			х	Х	Х	Х	Х	2015
City of Fresno	177		2 LU to 6 LD	Shaw	Brawley Veterans Blvd to	\$2,000,000.00						Х	X	2025
City of Fresno	243		2 LU to 4 LD	Shaw	Golden State Garfield to	\$4,000,000.00						Х	X	2030
City of Fresno County of	265		2 LU to 4 LD	Shaw	Veterans Blvd McCall to	\$1,000,000.00						х	X	2030
Fresno	558		2 LU to 3 LD	Shaw	Academy Willow to 1/2	\$10,000,000.00						х	X	2030
Clovis	359	20300000560		Shepherd	Mile east	\$1,623,000.00	Х	X	Х	х	Х	Х	Х	2012

Financial Element Page 6-53

TABLE 2 -- TIER 1 PROJECTS

MEASURE "C" EXTENSION EXPENDITURE PLAN

REGIONAL TRANSPORTATION FUNDING PROGRAM - URBAN TIER 1

URBAN AREA PROJECTS ASSUMING ALLOCATION OF 50% OF REGIONAL TRANSPORTATION FUNDING PROGRAM FUNDS

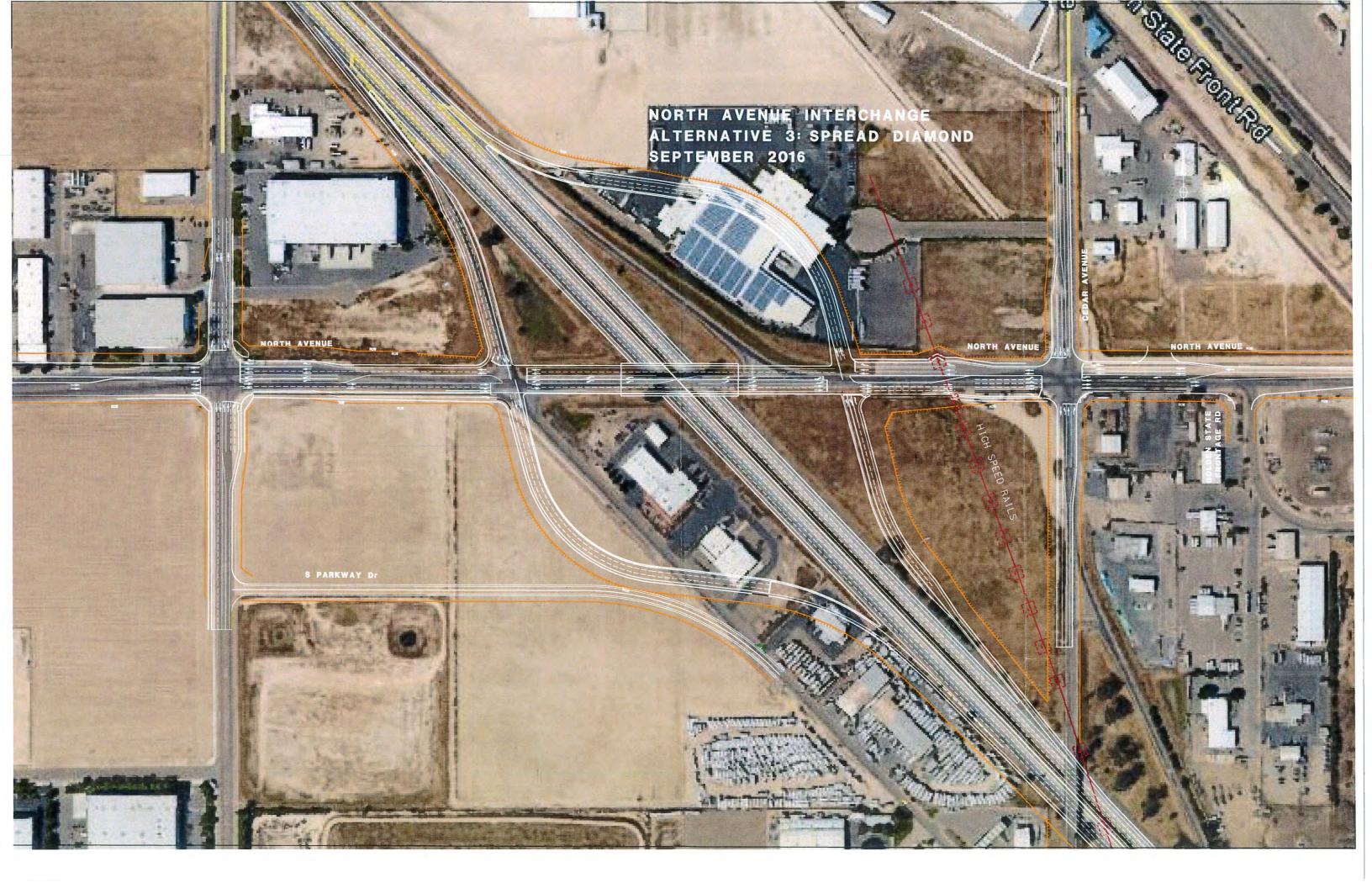
(The Tier 1 projects are in a generalized priority order. The funding order would be determined by Fresno COG during preparation of the biennial Expenditure Plan Update and could be affected by project cost benefit, project readiness, funding availability, etc.)

Project Identifier		Project Limits	Project Description	Un	inflated Costs	In	flated Costs *1	 umulative ated Costs
			Tier 1 Projects					
А	SR 180 East	Clovis to Temperance	New 4 Lane Freeway within 6 Lane Right of Way	\$	33,479,701	\$	63,169,246	\$ 63,169,246
В	SR 180 West	Brawley to Hughes/ West	Funding Shortfall	\$	6,995,758	\$	13,199,544	\$ 76,368,790
С	SR 41/SR 168/SR 180	Added Capacity for Safe Connection Between State Routes	New Braided Ramps	\$	29,981,821	\$	56,569,474	\$ 132,938,265
D	Willow Avenue	Barstow to Copper	Complete to 6 Lane Divided//retrofit bike paths	\$	13,991,517	\$	26,399,088	\$ 159,337,353
Е	Temperance Avenue	Bullard to Shepherd	Widen to 4 Lane Divided	\$	5,996,364	\$	11,313,895	\$ 170,651,247
F	Ventura Blvd.	SR 41 to SR 99	Widen to 4 Lane Divided	\$	5,000,000	\$	9,428,246	\$ 180,079,493
G	SR 99	Monterey Avenue	Bridge improvement/Improved acess to downtown from West Fresno	\$	1,000,000	\$	1,885,649	\$ 181,965,142
Н	California Avenue	Ventura to West	Widen to 4 Lane Divided	\$	7,995,152	\$	15,085,193	\$ 197,050,335
ı	Peach Avenue	SR 180 to Jensen Avenue	Widen to 4 Lane Divided	\$	24,984,851	\$	47,141,229	\$ 244,191,564
J	SR 41	SB Aux. Lane, Tulare to "O"	Widen/Aux. Lanes and Improve On & Off Ramps	\$	3,000,000	\$	5,656,947	\$ 249,848,511
K	Herndon Avenue	SR 99 to DeWolf	Complete to 6 Lane Divided/retrofit bike paths	Ċ	30,000,000	\$	20,000,	\$ 306,417,986
L	Shaw	Sunnyside - McCall	Complete to 6 Lane divided traffic signal upgrades, grade crossing	\$	31,580,852	\$	59,586,513	\$ 366,004,499
M	SR 99	North & Cedar Avenue	Improve Interchange	\$	24,984,851	\$	47,141,229	\$ 413,145,727
N	Veteran's Boulevard	Herndon to Grantland	Connection and grade separation	\$	60,000,000	\$	113,138,949	\$ 526,284,676
		•	Urban Tier 1 Total			\$	526,284,676	

^{*1} Original project costs were estimated by Local Agencies, and were in 2004 Dollars. A 5% annual inflation was applied through 2017.

TABLE 3 -- TIER 1 PROJECTS

MEASURE "C" EXTENSION EXPENDITURE PLAN


REGIONAL TRANSPORTATION FUNDING PROGRAM - RURAL TIER 1

RURAL AREA PROJECTS ASSUMING ALLOCATION OF 50% OF REGIONAL TRANSPORTATION FUNDING PROGRAM FUNDS

(The Tier 1 projects are in a generalized priority order. The funding order would be determined by Fresno COG during preparation of the biennial Expenditure Plan Update and could be affected by project cost benefit, project readiness, funding availability, etc.)

Project Identifier	Project Name	Project Limits	Project Description	Uninflated Cos	ts	Inflated Costs *1	Cumulative Inflated Costs
lucitiilei	r rojost rtamo	i rojost Emito	Tier 1 Projects	Onimatoa OOO		imatou oooto	illiated Costs
Α	SR 180 West	Yuba Ave. to James Ave.	Passing lanes	\$ 9,993,	940	\$ 18,856,491	\$ 18,856,491
В	SR 180 East	Temperance to Academy	Widen to 4 Lane Divided Expressway	\$ 14,491,2	214	\$ 27,341,913	\$ 46,198,404
С	SR 180 East	Academy to Trimmer Springs	Widen to 2 Lane Expressway on 4 Lane Right of Way	\$ 38,976,	368	\$ 73,540,317	\$ 119,738,721
D	SR 180 East	Trimmer Springs to Frankwood	Widen to 2 Lane Expressway on 4 Lane Right of Way	\$ 42,674,	126	\$ 80,517,218	\$ 200,255,939
E	Friant Road	Copper to Millerton	Widen to 4 Lane Divided	\$ 16,490,	002	\$ 31,113,211	\$ 231,369,150
F	Golden State Boulevard	American to Tulare County Line	Corridor Improvements	\$ 34,978,	792	\$ 65,997,720	\$ 297,366,870
G	SR 269	Bridge located between SR 198 & Huron	New Bridge & Channel to Address Seasonal Road Closures Due to Flooding	\$ 16,989,	699	\$ 32,056,035	\$ 329,422,906
Н	SR 180 West	Extend to Interstate 5 (I-5)	As a 2 Lane Undivided	\$ 39,975,	762	\$ 75,425,966	\$ 404,848,871
I	Mountain View Avenue	Bethel to Tulare County Line	Widen to 4 Lane Divided	\$ 5,496,	667	\$ 10,371,070	\$ 415,219,942
J	Mendocino Avenue	Manning to Industrial Park	Widen to 4 lane Divided	\$ 1,998,	788	\$ 3,771,298	\$ 418,991,240
K	SR 99	American Avenue	Interchange Improvements	\$ 24,984,	851	\$ 47,141,229	\$ 466,132,469
L	I-5	At SR 198	Construct Interchange Improvements	\$ 7,995,	152	\$ 15,085,193	\$ 481,217,662
			Rural Tier 1 Total			\$ 481,217,662	

^{*1} Original project costs were estimated by Local Agencies, and were in 2004 Dollars. A 5% annual inflation was applied through 2017.

	•				←	•	•	•		_		
		→	*	•			7	<u> </u>	7	_	*	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\	^	124	ካካ		7	71	↑	777	17	^	7
Traffic Volume (veh/h)	48	627	134	728	565	56	31	84	194	47	337	164
Future Volume (veh/h)	48	627	134 14	728	565	56	31	84	194	47	337	164
Number	7	4	0	3	8	18 0	5 0	2	12 0	1	6 0	16 0
Initial Q (Qb), veh Ped-Bike Adj(A_pbT)	1.00	U	1.00	1.00	U	1.00	1.00	U	0.99	1.00	U	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624
Adj Flow Rate, veh/h	52	682	146	791	614	61	34	91	211	51	366	178
Adj No. of Lanes	1	2	140	2	2	1	1	1	2	1	2	170
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	17	17	17	17	17	17	17	17	17	17	17	17
Cap, veh/h	63	908	405	800	1606	716	39	290	430	61	595	265
Arrive On Green	0.04	0.29	0.29	0.27	0.52	0.52	0.03	0.18	0.18	0.04	0.19	0.19
Sat Flow, veh/h	1547	3085	1376	3000	3085	1376	1547	1624	2409	1547	3085	1374
Grp Volume(v), veh/h	52	682	146	791	614	61	34	91	211	51	366	178
Grp Sat Flow(s), veh/h/ln	1547	1543	1376	1500	1543	1376	1547	1624	1204	1547	1543	1374
Q Serve(g_s), s	3.0	17.9	7.5	23.4	10.6	2.0	2.0	4.4	7.0	2.9	9.7	10.7
Cycle Q Clear(g_c), s	3.0	17.9	7.5	23.4	10.6	2.0	2.0	4.4	7.0	2.9	9.7	10.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	63	908	405	800	1606	716	39	290	430	61	595	265
V/C Ratio(X)	0.83	0.75	0.36	0.99	0.38	0.09	0.87	0.31	0.49	0.83	0.62	0.67
Avail Cap(c_a), veh/h	170	1096	489	800	1606	716	118	564	837	66	968	431
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	42.5	28.5	24.8	32.6	12.8	10.7	43.3	31.9	33.0	42.5	33.0	33.4
Incr Delay (d2), s/veh	22.9	2.4	0.5	28.8	0.1	0.1	39.5	0.6	0.9	54.8	1.0	3.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.7	7.9	2.9	12.9	4.6	0.8	1.3	2.0	2.4	2.2	4.2	4.3
LnGrp Delay(d),s/veh	65.4	30.9	25.4	61.3	13.0	10.8	82.8	32.5	33.9	97.4	34.0	36.4
LnGrp LOS	<u>E</u>	С	С	E	В	В	F	С	С	F	С	<u>D</u>
Approach Vol, veh/h		880			1466			336			595	
Approach Delay, s/veh		32.0			39.0			38.5			40.2	
Approach LOS		С			D			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.7	21.9	28.0	31.6	6.5	23.2	7.8	51.7				
Change Period (Y+Rc), s	* 4.2	6.0	* 4.2	5.3	* 4.2	6.0	* 4.2	5.3				
Max Green Setting (Gmax), s	* 3.8	31.0	* 24	31.7	* 6.8	28.0	* 9.8	45.7				
Max Q Clear Time (g_c+I1), s	4.9	9.0	25.4	19.9	4.0	12.7	5.0	12.6				
Green Ext Time (p_c), s	0.0	4.0	0.0	6.1	0.0	3.6	0.0	11.1				
Intersection Summary												
HCM 2010 Ctrl Delay			37.3									
HCM 2010 LOS			D									
Notes												

	ၨ	→	•	•	←	•	•	†	~	>		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻሻ	^					ሻሻ		77
Traffic Volume (veh/h)	0	438	430	121	748	0	0	0	0	265	0	601
Future Volume (veh/h)	0	438	430	121	748	0	0	0	0	265	0	601
Number	7	4	14	3	8	18				1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1496	1496	1496	1496	0				1496	0	1496
Adj Flow Rate, veh/h	0	476	467	132	813	0				288	0	653
Adj No. of Lanes	0	2	1	2	2	0				2	0	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				0.92	0.92	0.92
Percent Heavy Veh, %	0	27	27	27	27	0				27	0	27
Cap, veh/h	0	1104	494	281	1644	0				820	0	664
Arrive On Green	0.00	0.39	0.39	0.20	1.00	0.00				0.30	0.00	0.30
Sat Flow, veh/h	0	2917	1272	2764	2917	0				2764	0	2238
Grp Volume(v), veh/h	0	476	467	132	813	0				288	0	653
Grp Sat Flow(s),veh/h/ln	0	1421	1272	1382	1421	0				1382	0	1119
Q Serve(g_s), s	0.0	7.4	21.3	2.5	0.0	0.0				4.9	0.0	17.4
Cycle Q Clear(g_c), s	0.0	7.4	21.3	2.5	0.0	0.0				4.9	0.0	17.4
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h	0	1104	494	281	1644	0				820	0	664
V/C Ratio(X)	0.00	0.43	0.95	0.47	0.49	0.00				0.35	0.00	0.98
Avail Cap(c_a), veh/h	0	1104	494	281	1644	0				820	0	664
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	0.66	0.66	0.85	0.85	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	13.5	17.7	22.5	0.0	0.0				16.6	0.0	21.0
Incr Delay (d2), s/veh	0.0	0.8	22.0	1.0	0.9	0.0				0.3	0.0	30.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	3.0	10.4	1.0	0.2	0.0				1.9	0.0	8.2
LnGrp Delay(d),s/veh	0.0	14.3	39.7	23.5	0.9	0.0				16.8	0.0	51.6
LnGrp LOS		В	D	С	Α					В		<u>D</u>
Approach Vol, veh/h		943			945						941	
Approach Delay, s/veh		26.9			4.1						41.0	
Approach LOS		С			А						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs			3	4		6		8				
Phs Duration (G+Y+Rc), s			11.5	28.6		22.0		40.1				
Change Period (Y+Rc), s			5.3	* 5.3		4.2		5.3				
Max Green Setting (Gmax), s			5.2	* 23		17.8		32.7				
Max Q Clear Time (g_c+I1), s			4.5	23.3		19.4		2.0				
Green Ext Time (p_c), s			0.1	0.0		0.0		6.5				
Intersection Summary												
HCM 2010 Ctrl Delay			23.9									
HCM 2010 LOS			С									
Notes												

	۶	→	•	€	←	4	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	^			^	7	ሻሻ		7			
Traffic Volume (veh/h)	151	552	0	0	650	108	219	0	69	0	0	0
Future Volume (veh/h)	151	552	0	0	650	108	219	0	69	0	0	0
Number	7	4	14	3	8	18	5	2	12			
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Adj Sat Flow, veh/h/ln	1439	1439	0	0	1439	1439	1439	0	1439			
Adj Flow Rate, veh/h	161	587	0	0	691	115	233	0	73			
Adj No. of Lanes	2	2	0	0	2	1	2	0	1			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94			
Percent Heavy Veh, %	32	32	0	0	32	32	32	0	32			
Cap, veh/h	818	1966	0	0	882	393	327	0	150			
Arrive On Green	0.62	1.00	0.00	0.00	0.32	0.32	0.12	0.00	0.12			
Sat Flow, veh/h	2659	2807	0	0	2807	1218	2659	0	1223			
Grp Volume(v), veh/h	161	587	0	0	691	115	233	0	73			
Grp Sat Flow(s),veh/h/ln	1330	1367	0	0	1367	1218	1330	0	1223			
Q Serve(g_s), s	1.6	0.0	0.0	0.0	13.7	4.2	5.1	0.0	3.3			
Cycle Q Clear(g_c), s	1.6	0.0	0.0	0.0	13.7	4.2	5.1	0.0	3.3			
Prop In Lane	1.00		0.00	0.00		1.00	1.00		1.00			
Lane Grp Cap(c), veh/h	818	1966	0	0	882	393	327	0	150			
V/C Ratio(X)	0.20	0.30	0.00	0.00	0.78	0.29	0.71	0.00	0.49			
Avail Cap(c_a), veh/h	818	1966	0	0	1217	542	479	0	220			
HCM Platoon Ratio	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	0.90	0.90	0.00	0.00	0.73	0.73	1.00	0.00	1.00			
Uniform Delay (d), s/veh	8.3	0.0	0.0	0.0	18.4	15.2	25.3	0.0	24.5			
Incr Delay (d2), s/veh	0.1	0.4	0.0	0.0	5.1	1.4	2.9	0.0	2.4			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.6	0.1	0.0	0.0	5.8	1.6	2.0	0.0	1.2			
LnGrp Delay(d),s/veh	8.4	0.4	0.0	0.0	23.5	16.6	28.2	0.0	27.0			
LnGrp LOS	A	Α			С	В	С		С			
Approach Vol, veh/h		748			806			306				
Approach Delay, s/veh		2.1			22.5			27.9				
Approach LOS		Α			С			С				
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4			7	8				
Phs Duration (G+Y+Rc), s		11.6		48.4			23.8	24.7				
Change Period (Y+Rc), s		* 4.2		5.3			5.3	* 5.3				
Max Green Setting (Gmax), s		* 11		39.7			8.8	* 27				
Max Q Clear Time (g_c+I1), s		7.1		2.0			3.6	15.7				
Green Ext Time (p_c), s		0.4		4.8			2.0	3.6				
Intersection Summary												
HCM 2010 Ctrl Delay			15.2									
HCM 2010 LOS			В									
Notes												

Movement EBL EBT EBR Lane Configurations ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Traffic Volume (veh/h) 89 455 77 Future Volume (veh/h) 89 455 77 Number 7 4 14 Initial Q (Ob), veh 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 Adj Sat Flow, veh/h/In 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s), veh/h 1	WBL 71 71 71 3 0 1.00 1.00 1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00 1.00	WBT 650 650 8 0 1.00 1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 11.5 1065 0.66 1501 1.00	WBR 68 68 18 0 1.00 1.00 1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16 669	NBL 79 79 79 5 0 1.00 1.00 1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87 178	NBT 39 39 39 2 0 1.00 1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3 245 0.17 907	NBR 80 80 80 12 0 0.99 1.00 1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	SBL 9 9 1 0 1.00 1.00 1439 10 1 0.92 32 18 0.01 1371 10 1371 0.4 0.4 1.00 18 0.57	\$BT 35 35 36 0 1.00 1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	SBR 29 29 16 0 0.99 1.00 1439 32 135 0.11 1214 32 1214 1.3 1.30 135 0.24
Traffic Volume (veh/h) 89 455 77 Future Volume (veh/h) 89 455 77 Number 7 4 14 Initial Q (Qb), veh 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 Upstream Filter(I) 1.00 1.00 Uniform Delay (d), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 11.8 10.3 LnGrp LOS D B	71 71 71 3 0 1.00 1.00 1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173	650 650 8 0 1.00 1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 11.5	68 68 18 0 1.00 1.00 1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	79 79 79 5 0 1.00 1.00 1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	39 39 2 0 1.00 1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	80 80 12 0 0.99 1.00 1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	9 9 1 0 1.00 1.00 1439 10 1 0.92 32 18 0.01 1371 0.4 0.4 1.00 18	35 35 6 0 1.00 1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3	29 29 16 0 0.99 1.00 1439 32 1 0.92 32 135 0.11 1214 1.3 1.3 1.00 135
Future Volume (veh/h) 89 455 77 Number 7 4 14 Initial Q (Qb), veh 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 Adj Sat Flow, veh/h/In 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/In 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 Upstream Filter(I) 1.00 1.00 Uniform Delay (d), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 1.9 2.7 0.8 LnGrp Delay(d),s/veh 11.0 11.8 10.3 LnGrp LOS D B	71 3 0 1.00 1.00 1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00	650 8 0 1.00 1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 1065 0.66 1501	68 18 0 1.00 1.00 1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	79 5 0 1.00 1.00 1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	39 2 0 1.00 1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	80 12 0 0.99 1.00 1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	9 1 0 1.00 1.00 1439 10 1 0.92 32 18 0.01 1371 0.4 0.4 1.00 18	35 6 0 1.00 1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3	29 16 0 0.99 1.00 1439 32 1 0.92 32 135 0.11 1214 32 1214 1.3 1.00 135
Number 7 4 14 Initial Q (Qb), veh 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS	3 0 1.00 1.00 1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173	8 0 1.00 1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 11.5	18 0 1.00 1.00 1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	5 0 1.00 1.00 1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	2 0 1.00 1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	12 0 0.99 1.00 1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	1 0 1.00 1.00 1439 10 1 0.92 32 18 0.01 1371 0.4 0.4 1.00 18	1.00 1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	16 0 0.99 1.00 1439 32 10.92 32 135 0.11 1214 1.3 1.3 1.00 135
Initial Q (Qb), veh 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B	0 1.00 1.00 1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173	0 1.00 1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 1065 0.66 1501	0 1.00 1.00 1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	0 1.00 1.00 1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	1.00 1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	0 0.99 1.00 1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	0 1.00 1.00 1439 10 1 0.92 32 18 0.01 1371 10 1371 0.4 0.4 1.00 18	1.00 1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	0 0.99 1.00 1439 32 135 0.11 1214 1.3 1.3 1.00 135
Ped-Bike Adj(A_pbT) 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h	1.00 1.00 1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173	1.00 1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 1065 0.66 1501	1.00 1.00 1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	1.00 1.00 1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	1.00 1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	0.99 1.00 1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	1.00 1.00 1439 10 1 0.92 32 18 0.01 1371 0.4 0.4 1.00 18	1.00 1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	0.99 1.00 1439 32 1 0.92 32 135 0.11 1214 32 1214 1.3 1.00 135
Parking Bus, Adj 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I)	1.00 1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173	1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 1065 0.66 1501	1.00 1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	1.00 1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	1.00 1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	1.00 1439 10 1 0.92 32 18 0.01 1371 0.4 0.4 1.00	1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	1.00 1439 32 1 0.92 32 135 0.11 1214 32 1214 1.3 1.00 135
Adj Sat Flow, veh/h/ln 1439 1439 1439 Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d2), s/veh<	1439 77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00	1439 707 2 0.92 32 1065 0.39 2735 707 1367 11.5 1065 0.66 1501	1439 74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	1439 86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	1439 42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	1439 87 1 0.92 32 208 0.17 1217 87 1217 3.4 1.00 208 0.42	1439 10 1 0.92 32 18 0.01 1371 10 1371 0.4 0.4 1.00 18	1439 38 1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	1439 32 1 0.92 32 135 0.11 1214 32 1214 1.3 1.00 135
Adj Flow Rate, veh/h 97 495 84 Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/	77 1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173	707 2 0.92 32 1065 0.39 2735 707 1367 11.5 1065 0.66 1501	74 1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	86 1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	42 1 0.92 32 245 0.17 1439 42 1439 1.3 1.3 245 0.17	87 1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	10 1 0.92 32 18 0.01 1371 10 1371 0.4 0.4 1.00 18	38 1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	32 1 0.92 32 135 0.11 1214 32 1214 1.3 1.00 135
Adj No. of Lanes 1 2 1 Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),	1 0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173	2 0.92 32 1065 0.39 2735 707 1367 11.5 1065 0.66 1501	1 0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	1 0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	1 0.92 32 245 0.17 1439 42 1439 1.3 1.3	1 0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	1 0.92 32 18 0.01 1371 10 1371 0.4 0.4 1.00	1 0.92 32 160 0.11 1439 38 1439 1.3 1.3	1 0.92 32 135 0.11 1214 32 1214 1.3 1.00 135
Peak Hour Factor 0.92 0.92 0.92 Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/In 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0	0.92 32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00	0.92 32 1065 0.39 2735 707 1367 11.5 11.5 1065 0.66 1501	0.92 32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	0.92 32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	0.92 32 245 0.17 1439 42 1439 1.3 1.3	0.92 32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	0.92 32 18 0.01 1371 10 1371 0.4 0.4 1.00	0.92 32 160 0.11 1439 38 1439 1.3 1.3	0.92 32 135 0.11 1214 32 1214 1.3 1.00 135
Percent Heavy Veh, % 32 32 32 Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/In 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8	32 87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00	32 1065 0.39 2735 707 1367 11.5 11.5 1065 0.66 1501	32 474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	32 99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	32 245 0.17 1439 42 1439 1.3 1.3 245 0.17	32 208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	32 18 0.01 1371 10 1371 0.4 0.4 1.00	32 160 0.11 1439 38 1439 1.3 1.3	32 135 0.11 1214 32 1214 1.3 1.00 135
Cap, veh/h 113 1116 497 Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3	87 0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00	1065 0.39 2735 707 1367 11.5 11.5 1065 0.66 1501	474 0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	99 0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	245 0.17 1439 42 1439 1.3 1.3 245 0.17	208 0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	18 0.01 1371 10 1371 0.4 0.4 1.00	160 0.11 1439 38 1439 1.3 1.3	135 0.11 1214 32 1214 1.3 1.00 135
Arrive On Green 0.08 0.41 0.41 Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(l) 1.00 1.00 1.00 Uniform Delay (d), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B	0.06 1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00	0.39 2735 707 1367 11.5 11.5 1065 0.66 1501	0.39 1219 74 1219 2.1 2.1 1.00 474 0.16	0.07 1371 86 1371 3.3 3.3 1.00 99 0.87	0.17 1439 42 1439 1.3 1.3 245 0.17	0.17 1217 87 1217 3.4 3.4 1.00 208 0.42	0.01 1371 10 1371 0.4 0.4 1.00 18	0.11 1439 38 1439 1.3 1.3	0.11 1214 32 1214 1.3 1.3 1.00 135
Sat Flow, veh/h 1371 2735 1219 Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	1371 77 1371 3.0 3.0 1.00 87 0.88 173 1.00	2735 707 1367 11.5 11.5 1065 0.66 1501	74 1219 2.1 2.1 1.00 474 0.16	1371 86 1371 3.3 3.3 1.00 99 0.87	1439 42 1439 1.3 1.3 245 0.17	1217 87 1217 3.4 3.4 1.00 208 0.42	1371 10 1371 0.4 0.4 1.00 18	1439 38 1439 1.3 1.3	1214 32 1214 1.3 1.3 1.00 135
Grp Volume(v), veh/h 97 495 84 Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	77 1371 3.0 3.0 1.00 87 0.88 173 1.00	707 1367 11.5 11.5 1065 0.66 1501	74 1219 2.1 2.1 1.00 474 0.16	86 1371 3.3 3.3 1.00 99 0.87	42 1439 1.3 1.3 245 0.17	87 1217 3.4 3.4 1.00 208 0.42	10 1371 0.4 0.4 1.00	38 1439 1.3 1.3	32 1214 1.3 1.3 1.00 135
Grp Sat Flow(s),veh/h/ln 1371 1367 1219 Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	1371 3.0 3.0 1.00 87 0.88 173 1.00	1367 11.5 11.5 1065 0.66 1501	1219 2.1 2.1 1.00 474 0.16	1371 3.3 3.3 1.00 99 0.87	1439 1.3 1.3 245 0.17	1217 3.4 3.4 1.00 208 0.42	1371 0.4 0.4 1.00 18	1439 1.3 1.3	1214 1.3 1.3 1.00 135
Q Serve(g_s), s 3.8 7.1 2.4 Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	3.0 3.0 1.00 87 0.88 173 1.00	11.5 11.5 1065 0.66 1501	2.1 2.1 1.00 474 0.16	3.3 3.3 1.00 99 0.87	1.3 1.3 245 0.17	3.4 3.4 1.00 208 0.42	0.4 0.4 1.00 18	1.3 1.3	1.3 1.3 1.00 135
Cycle Q Clear(g_c), s 3.8 7.1 2.4 Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	3.0 1.00 87 0.88 173 1.00	11.5 1065 0.66 1501	2.1 1.00 474 0.16	3.3 1.00 99 0.87	1.3 245 0.17	3.4 1.00 208 0.42	0.4 1.00 18	1.3	1.3 1.00 135
Prop In Lane 1.00 1.00 Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	1.00 87 0.88 173 1.00	1065 0.66 1501	1.00 474 0.16	1.00 99 0.87	245 0.17	1.00 208 0.42	1.00 18	160	1.00 135
Lane Grp Cap(c), veh/h 113 1116 497 V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	87 0.88 173 1.00	0.66 1501	474 0.16	99 0.87	0.17	208 0.42	18		135
V/C Ratio(X) 0.86 0.44 0.17 Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	0.88 173 1.00	0.66 1501	0.16	0.87	0.17	0.42			
Avail Cap(c_a), veh/h 198 1552 692 HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	173 1.00	1501					0.57	0.24	0.24
HCM Platoon Ratio 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	1.00		669	178	007				
Upstream Filter(I) 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B		1.00				767	127	854	720
Uniform Delay (d), s/veh 24.4 11.5 10.2 Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incr Delay (d2), s/veh 16.5 0.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	25.0	13.6	10.7	24.8	19.1	20.0	26.5	21.9	21.9
%ile BackOfQ(50%),veh/ln 1.9 2.7 0.8 LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	22.9	0.7	0.2	19.6	0.3	1.3	25.3	0.8	0.9
LnGrp Delay(d),s/veh 41.0 11.8 10.3 LnGrp LOS D B B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp LOS D B B	1.7	4.4	0.7	1.8	0.6	1.2	0.3	0.6	0.5
	48.0	14.3	10.9	44.4	19.4	21.3	51.8	22.6	22.8
Approach Vol, veh/h 676	D	В	В	D	В	С	D	С	С
		858			215			80	
Approach Delay, s/veh 15.8		17.0			30.2			26.3	
Approach LOS B		В			С			С	
Timer 1 2 3	4	5	6	7	8				
Assigned Phs 1 2 3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s 4.9 14.1 7.6	27.3	8.1	10.9	8.6	26.3				
Change Period (Y+Rc), s * 4.2 4.9 * 4.2	5.3	* 4.2	4.9	* 4.2	5.3				
Max Green Setting (Gmax), s * 5 34.0 * 6.8	30.6	* 7	32.0	* 7.8	29.6				
Max Q Clear Time (g_c+11) , s 2.4 5.4 5.0	9.1	5.3	3.3	5.8	13.5				
Green Ext Time (p_c), s 0.0 0.7 0.0	8.7	0.0	0.7	0.0	7.5				
Intersection Summary									
HCM 2010 Ctrl Delay 18.5									
HCM 2010 LOS B									
Notes									

	۶	→	•	•	←	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ ∱		ሻ	∱ ኈ	
Traffic Volume (veh/h)	219	300	162	66	204	52	199	368	44	96	413	180
Future Volume (veh/h)	219	300	162	66	204	52	199	368	44	96	413	180
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	238	326	176	72	222	57	216	400	48	104	449	196
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	260	309	164	156	453	110	210	711	85	104	393	170
Arrive On Green	0.56	0.56	0.56	0.56	0.56	0.56	0.13	0.24	0.24	0.06	0.17	0.17
Sat Flow, veh/h	386	550	292	207	807	197	1675	3008	359	1675	2273	984
Grp Volume(v), veh/h	740	0	0	351	0	0	216	221	227	104	329	316
Grp Sat Flow(s),veh/h/ln	1229	0	0	1211	0	0	1675	1671	1696	1675	1671	1586
Q Serve(g_s), s	45.0	0.0	0.0	0.0	0.0	0.0	13.8	12.8	13.0	6.8	19.0	19.0
Cycle Q Clear(g_c), s	61.7	0.0	0.0	16.7	0.0	0.0	13.8	12.8	13.0	6.8	19.0	19.0
Prop In Lane	0.32		0.24	0.21		0.16	1.00		0.21	1.00		0.62
Lane Grp Cap(c), veh/h	732	0	0	719	0	0	210	395	401	104	289	274
V/C Ratio(X)	1.01	0.00	0.00	0.49	0.00	0.00	1.03	0.56	0.57	1.00	1.14	1.15
Avail Cap(c_a), veh/h	732	0	0	719	0	0	210	400	405	104	289	274
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.2	0.0	0.0	13.9	0.0	0.0	48.1	37.0	37.0	51.6	45.5	45.5
Incr Delay (d2), s/veh	35.8	0.0	0.0	0.5	0.0	0.0	69.4	1.7	1.8	89.5	96.3	102.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	29.5	0.0	0.0	6.3	0.0	0.0	10.4	6.1	6.2	5.7	16.5	16.1
LnGrp Delay(d),s/veh	63.0	0.0	0.0	14.4	0.0	0.0	117.7	38.7	38.8	141.1	141.8	147.8
LnGrp LOS	F	7.10		В	054		F	D	D	F	F	F
Approach Vol, veh/h		740			351			664			749	
Approach Delay, s/veh		63.0			14.4			64.4			144.2	
Approach LOS		Е			В			Е			F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.0	32.0		67.0	18.0	25.0		67.0				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 6.8	* 26		61.7	* 14	19.0		61.7				
Max Q Clear Time (g_c+l1), s	8.8	15.0		63.7	15.8	21.0		18.7				
Green Ext Time (p_c), s	0.0	4.5		0.0	0.0	0.0		9.8				
Intersection Summary												
HCM 2010 Ctrl Delay			80.9									
HCM 2010 LOS			F									

Intersection						
Int Delay, s/veh	5.4					
		NDT	CDT	CDD	CEL	CED
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	1/	4	150	7	`	100
Traffic Vol, veh/h	16	147	159	24	51	199
Future Vol, veh/h	16	147	159	24	51	199
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	-	Stop
Storage Length	-	-	-	50	0	65
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	50	50	50	50	50	50
Mvmt Flow	17	160	173	26	55	216
Major/Minor	Notor1	Λ.	/aior?		/inar?	
	Major1		Major2		/linor2	170
Conflicting Flow All	173	0	-	0	368	173
Stage 1	-	-	-	-	173	-
Stage 2	-	-	-	-	195	-
Critical Hdwy	4.6	-	-	-	6.9	6.7
Critical Hdwy Stg 1	-	-	-	-	5.9	-
Critical Hdwy Stg 2	-	-	-	-	5.9	-
Follow-up Hdwy	2.65	-	-	-	3.95	3.75
Pot Cap-1 Maneuver	1160	-	-	0	547	760
Stage 1	-	-	-	0	754	-
Stage 2			-	0	735	-
	-	-				
Platoon blocked, %	-	-	-			
Platoon blocked, % Mov Cap-1 Maneuver			-	_	538	760
Mov Cap-1 Maneuver	1160		- - -	-	538 538	760 -
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	1160		- - -	-	538	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	1160		- - -		538 754	
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	1160		- - - -	-	538	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	1160 - - -		- - - -	-	538 754 723	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	1160		- - - - SB	-	538 754	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	1160 - - -		- - - - - - SB	-	538 754 723	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	1160 - - - NB			-	538 754 723 SE	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	1160 - - - NB			-	538 754 723 SE 11.8	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	1160 - - - NB 0.8	-	0	-	538 754 723 SE 11.8 B	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvml	1160 - - - NB 0.8	- - - - -	0	SELn1 S	538 754 723 SE 11.8 B	SBT
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	1160 - - - NB 0.8	- - - - - NBL 1160	0 NBT :	SELn1 S 538	538 754 723 SE 11.8 B	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	1160 - - - NB 0.8	NBL 1160 0.015	0 NBT :	- - - SELn1 S 538 0.103	538 754 723 SE 11.8 B	SBT
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	1160 - - - NB 0.8	NBL 1160 0.015 8.2	0 NBT :	SELn1 S 538 0.103 12.5	538 754 723 SE 11.8 B SELn2 760 0.285 11.6	SBT
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS	1160 - - - NB 0.8	NBL 1160 0.015 8.2 A	0 NBT :	SELn1 S 538 0.103 12.5 B	538 754 723 SE 11.8 B 6ELn2 760 0.285 11.6 B	SBT
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	1160 - - - NB 0.8	NBL 1160 0.015 8.2	0 NBT :	SELn1 S 538 0.103 12.5	538 754 723 SE 11.8 B SELn2 760 0.285 11.6	SBT -

	ၨ	→	•	•	←	•	•	†	~	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻሻ	^	7	ሻ	†	77	7	^	7
Traffic Volume (veh/h)	145	712	104	241	733	28	144	374	778	73	110	125
Future Volume (veh/h)	145	712	104	241	733	28	144	374	778	73	110	125
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1638	1638	1638	1638	1638	1638	1638	1638	1638	1638	1638	1638
Adj Flow Rate, veh/h	158	774	113	262	797	30	157	407	846	79	120	136
Adj No. of Lanes	1	2	1	2	2	1	1	1	2	1	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	16	16	16	16	16	16	16	16	16	16	16	16
Cap, veh/h	181	896	400	535	1113	496	389	491	731	97	350	155
Arrive On Green	0.12	0.29	0.29	0.35	0.72	0.72	0.42	0.50	0.50	0.06	0.11	0.11
Sat Flow, veh/h	1560	3112	1388	3026	3112	1386	1560	1638	2438	1560	3112	1381
Grp Volume(v), veh/h	158	774	113	262	797	30	157	407	846	79	120	136
Grp Sat Flow(s),veh/h/ln	1560	1556	1388	1513	1556	1386	1560	1638	1219	1560	1556	1381
Q Serve(g_s), s	12.0	28.3	7.6	8.1	17.9	0.6	8.5	25.4	36.0	6.0	4.3	9.0
Cycle Q Clear(g_c), s	12.0	28.3	7.6	8.1	17.9	0.6	8.5	25.4	36.0	6.0	4.3	9.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	181	896	400	535	1113	496	389	491	731	97	350	155
V/C Ratio(X)	0.87	0.86	0.28	0.49	0.72	0.06	0.40	0.83	1.16	0.82	0.34	0.87
Avail Cap(c_a), veh/h	205	1107	494	535	1113	496	389	491	731	114	752	334
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.67	1.67	1.67	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.91	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.1	40.5	33.1	34.6	13.5	6.8	28.7	27.3	29.9	55.6	49.2	31.3
Incr Delay (d2), s/veh	28.7	10.8	1.8	0.6	3.6	0.2	0.7	11.3	85.5	31.0	0.6	14.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.6	13.5	3.1	3.4	7.9	0.3	3.7	12.8	20.5	3.4	1.9	4.0
LnGrp Delay(d),s/veh	80.8	51.3	34.9	35.2	17.1	7.0	29.4	38.6	115.4	86.6	49.7	45.4
LnGrp LOS	F	D	С	D	В	A	С	D	F	F	D	D
Approach Vol, veh/h		1045			1089			1410			335	
Approach Delay, s/veh		54.0			21.2			83.7			56.6	
Approach LOS		D			С			F			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.6	42.0	26.5	39.8	34.1	19.5	18.1	48.2				
Change Period (Y+Rc), s	4.2	* 6	5.3	* 5.3	4.2	* 6	* 4.2	5.3				
Max Green Setting (Gmax), s	8.8	* 36	12.8	* 43	15.8	* 29	* 16	39.7				
Max Q Clear Time (g_c+I1), s	8.0	38.0	10.1	30.3	10.5	11.0	14.0	19.9				
Green Ext Time (p_c), s	0.0	0.0	1.5	4.3	0.3	1.0	0.1	6.1				
Intersection Summary												
HCM 2010 Ctrl Delay			55.8									
HCM 2010 LOS			Е									
Notes												

	•		_		-	•	•	•		<u></u>	ı	1
		→	¥	₹	_	`	7	ı	~	*	*	~
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻሻ	^					ሻሻ		77
Traffic Volume (veh/h)	0	1126	437	153	783	0	0	0	0	129	0	219
Future Volume (veh/h)	0	1126	437	153	783	0	0	0	0	129	0	219
Number	7	4	14	3	8	18				1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0
3 · _1 ·	.00		1.00	1.00		1.00				1.00		1.00
3 ,	.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1557	1557	1557	1557	0				1557	0	1557
Adj Flow Rate, veh/h	0	1198	465	163	833	0				137	0	233
Adj No. of Lanes	0	2	1	2	2	0				2	0	2
).94	0.94	0.94	0.94	0.94	0.94				0.94	0.94	0.94
Percent Heavy Veh, %	0	22	22	22	22	0				22	0	22
Cap, veh/h	0	1417	634	463	2155	0				326	0	264
	0.00	0.64	0.64	0.32	1.00	0.00				0.11	0.00	0.11
Sat Flow, veh/h	0	3037	1324	2877	3037	0				2877	0	2330
Grp Volume(v), veh/h	0	1198	465	163	833	0				137	0	233
Grp Sat Flow(s),veh/h/ln	0	1480	1324	1439	1480	0				1439	0	1165
.0= ,	0.0	19.1	14.4	2.6	0.0	0.0				2.7	0.0	5.9
J 10— 71	0.0	19.1	14.4	2.6	0.0	0.0				2.7	0.0	5.9
•	00.0		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h	0	1417	634	463	2155	0				326	0	264
` '	00.0	0.85	0.73	0.35	0.39	0.00				0.42	0.00	0.88
Avail Cap(c_a), veh/h	0	1662	744	463	2155	0				326	0	264
	.00	1.33	1.33	2.00	2.00	1.00				1.00	1.00	1.00
1 1/	00.0	0.57	0.57	0.69	0.69	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh		9.1	8.3	17.9	0.0	0.0				24.8	0.0	26.2
J . , , .	0.0	3.8	4.3	0.3	0.4	0.0				0.9	0.0	27.5
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr		8.3	5.8	1.0	0.1	0.0				1.1	0.0	2.9
1 317	0.0	12.9	12.6	18.3	0.4	0.0				25.6	0.0	53.7
LnGrp LOS		В	В	В	<u>A</u>					С		D
Approach Vol, veh/h		1663			996						370	
Approach Delay, s/veh		12.8			3.3						43.3	
Approach LOS		В			Α						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs			3	4		6		8				
Phs Duration (G+Y+Rc), s	S		15.0	34.0		11.0		49.0				
Change Period (Y+Rc), s			5.3	* 5.3		4.2		5.3				
Max Green Setting (Gmax	(), s		5.8	* 34		6.8		43.7				
Max Q Clear Time (g_c+I1	•		4.6	21.1		7.9		2.0				
Green Ext Time (p_c), s			0.7	7.6		0.0		7.1				
Intersection Summary												
HCM 2010 Ctrl Delay			13.4									
HCM 2010 LOS			В									
Notes												
INUIGS												

		→	`	•	←	•	•	†	<u></u>	\	ļ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	^			^	7	44		7				
Traffic Volume (veh/h)	638	617	0	0	649	403	287	0	104	0	0	0	
Future Volume (veh/h)	638	617	0	0	649	403	287	0	104	0	0	0	
Number	7	4	14	3	8	18	5	2	12				
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0				
` '	1.00		1.00	1.00		1.00	1.00		1.00				
J\ — /	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
J . J	1652	1652	0	0	1652	1652	1652	0	1652				
Adj Flow Rate, veh/h	693	671	0	0	705	438	312	0	113				
Adj No. of Lanes	2	2	0	0	2	1	2	0	1				
	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92				
Percent Heavy Veh, %	15	15	0.72	0.72	15	15	15	0.72	15				
Cap, veh/h	887	2220	0	0	1031	459	410	0	189				
•	0.49	1.00	0.00	0.00	0.11	0.11	0.13	0.00	0.13				
	3053	3222	0.00	0.00	3222	1398	3053	0.00	1404				
Grp Volume(v), veh/h	693	671	0	0	705	438	312	0	113				
Grp Sat Flow(s),veh/h/ln1		1570	0	0	1570	1398	1526	0	1404				
10- 7	11.3	0.0	0.0	0.0	13.0	18.7	5.9	0.0	4.5				
J 10- 7:	11.3	0.0	0.0	0.0	13.0	18.7	5.9	0.0	4.5				
	1.00		0.00	0.00		1.00	1.00		1.00				
1		2220	0	0	1031	459	410	0	189				
` '	0.78	0.30	0.00	0.00	0.68	0.95	0.76	0.00	0.60				
Avail Cap(c_a), veh/h	906	2220	0	0	1031	459	448	0	206				
	1.67	1.67	1.00	1.00	0.33	0.33	1.00	1.00	1.00				
1 1/	0.61	0.61	0.00	0.00	0.78	0.78	1.00	0.00	1.00				
Uniform Delay (d), s/veh		0.0	0.0	0.0	23.8	26.3	25.0	0.0	24.4				
Incr Delay (d2), s/veh	2.7	0.2	0.0	0.0	2.9	27.5	6.9	0.0	4.1				
nitial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/	/lr5.0	0.1	0.0	0.0	6.1	10.7	2.9	0.0	2.0				
_nGrp Delay(d),s/veh	16.6	0.2	0.0	0.0	26.7	53.8	31.9	0.0	28.5				
LnGrp LOS	В	Α			С	D	С		С				
Approach Vol, veh/h		1364			1143			425					
Approach Delay, s/veh		8.5			37.1			31.0					
Approach LOS		Α			D			С					
Timer	1	2	3	4	5	6	7	8					
Assigned Phs		2		4			7	8					
Phs Duration (G+Y+Rc),	S	12.3		47.7			22.7	25.0					
Change Period (Y+Rc), s		* 4.2		5.3			5.3	* 5.3					
Max Green Setting (Gma		* 8.8		41.7			17.8	* 20					
Max Q Clear Time (q_c+		7.9		2.0			13.3	20.7					
Green Ext Time (p_c), s	11), 3	0.2		8.3			2.7	0.0					
Intersection Summary		J		3.3				2.0					
			22.9										
HCM 2010 Ctrl Delay HCM 2010 LOS			22.9 C										
			C										
Notes													

		_	_	←	•	•	+	<u></u>	_	1	7
Movement FDI	ГОТ	▼	▼	WDT	WDD	NDI	I NDT	/ NDD	CDI	CDT	CDD
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations 7	^	7	ነ	† †	10	202	^	12/	ነ	17	7
Traffic Volume (veh/h) 35	675	11 11	95	805	18	203	66	136	13	17 17	44 44
Future Volume (veh/h) 35 Number 7	675	14	95 3	805	18	203	66 2	136 12	13	6	
	4			8	18	5	0		1	0	16
· /·	0	1.00	1.00	U	1.00	1.00	U	1.00	1.00	U	0.99
Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557
Adj Flow Rate, veh/h 38	734	1337	103	875	20	221	72	148	1337	18	48
Adj No. of Lanes 1	2	1	103	2	1	1	1	140	14	10	1
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, % 22	22	22	22	22	22	22	22	22	22	22	22
Cap, veh/h 397	1526	681	123	951	424	247	360	305	23	115	97
Arrive On Green 0.36	0.69	0.69	0.08	0.32	0.32	0.17	0.23	0.23	0.02	0.07	0.07
Sat Flow, veh/h 1483	2959	1320	1483	2959	1318	1483	1557	1319	1483	1557	1308
Grp Volume(v), veh/h 38	734	1320	103	875	20	221	72	148	1403	18	48
Grp Sat Flow(s), veh/h/ln1483	1480	1320	1483	1480	1318	1483	1557	1319	1483	1557	1308
Q Serve(g_s), s 2.0	14.0	0.2	8.2	34.2	1.1	17.5	4.5	11.7	1.1	1.3	4.2
Cycle Q Clear(g_c), s 2.0	14.0	0.2	8.2	34.2	1.1	17.5	4.5	11.7	1.1	1.3	4.2
Prop In Lane 1.00	14.0	1.00	1.00	J4.Z	1.00	1.00	4.5	1.00	1.00	1.5	1.00
Lane Grp Cap(c), veh/h 397	1526	681	123	951	424	247	360	305	23	115	97
V/C Ratio(X) 0.10	0.48	0.02	0.84	0.92	0.05	0.89	0.20	0.49	0.61	0.16	0.50
Avail Cap(c_a), veh/h 397	1526	681	147	1013	451	282	646	547	62	415	349
HCM Platoon Ratio 1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 0.96	0.96	0.96	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 29.0	11.3	2.1	54.3	39.2	20.8	49.0	37.2	40.0	58.7	52.0	53.4
Incr Delay (d2), s/veh 0.1	1.0	0.0	29.1	15.2	0.2	26.2	0.3	1.2	23.1	0.6	3.9
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr0.8	5.8	0.0	4.4	16.0	0.4	9.0	1.9	4.3	0.6	0.6	1.6
LnGrp Delay(d),s/veh 29.1	12.4	2.2	83.4	54.4	21.0	75.1	37.5	41.2	81.8	52.7	57.3
LnGrp LOS C	12.4	Α.2	03. т F	D	C C	73.1 E	37.3 D	D	F	D	57.5
Approach Vol, veh/h	784			998			441		<u> </u>	80	
Approach Delay, s/veh	13.0			56.8			57.6			60.5	
Approach LOS	13.0 B			50.0 E			57.0 E			E	
•											
Timer 1	2	3	4	5	6	7	8				
Assigned Phs 1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s6.1	32.6	14.1	67.2	24.9	13.8	37.4	43.9				
Change Period (Y+Rc), \$ 4.2	4.9	* 4.2	5.3	4.9	* 4.9	5.3	* 5.3				
Max Green Setting (Gmax), 5	49.8	* 12	34.7	22.8	* 32	5.5	* 41				
Max Q Clear Time (g_c+l13,1s	13.7	10.2	16.0	19.5	6.2	4.0	36.2				
Green Ext Time (p_c), s 0.0	1.5	0.0	4.7	0.5	0.2	0.7	2.4				
Intersection Summary											
HCM 2010 Ctrl Delay		42.2									
HCM 2010 LOS		D									
Notes											

•		+	<u>~</u>	•	•	•	•	†	<u></u>	\	1	4
Movement EB	L E	ВТ	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	↑ ↑		ሻ	†	02.1
Traffic Volume (veh/h) 16		250	300	52	301	87	288	601	51	42	480	205
Future Volume (veh/h) 16		250	300	52	301	87	288	601	51	42	480	205
	7	4	14	3	8	18	5	2	12	1	6	16
	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0		U	1.00	1.00	U	1.00	1.00		1.00	1.00	· ·	1.00
Parking Bus, Adj 1.0		.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 190			1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h 17		260	312	54	314	91	300	626	53	44	500	214
	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor 0.9			0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, % 1		15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h 16		221	256	91	491	136	249	958	81	55	438	187
Arrive On Green 0.5			0.53	0.53	0.53	0.53	0.15	0.31	0.31	0.03	0.19	0.19
Sat Flow, veh/h 24		117	481	108	925	256	1675	3120	264	1675	2286	973
Grp Volume(v), veh/h 74		0	0	459	0	0	300	335	344	44	365	349
Grp Sat Flow(s), veh/h/ln114		0	0	1289	0	0	1675	1671	1713	1675	1671	1588
Q Serve(q_s), s 36.		0.0	0.0	0.0	0.0	0.0	17.8	20.8	20.9	3.1	23.0	23.0
Cycle Q Clear(g_c), s 63.		0.0	0.0	27.1	0.0	0.0	17.8	20.8	20.9	3.1	23.0	23.0
Prop In Lane 0.2			0.42	0.12		0.20	1.00		0.15	1.00		0.61
Lane Grp Cap(c), veh/h 64		0	0	718	0	0	249	513	526	55	320	304
V/C Ratio(X) 1.1			0.00	0.64	0.00	0.00	1.21	0.65	0.65	0.80	1.14	1.15
Avail Cap(c_a), veh/h 64		0	0	718	0	0	249	513	526	67	320	304
HCM Platoon Ratio 1.0		.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.0			0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 31.		0.0	0.0	18.9	0.0	0.0	51.1	36.0	36.0	57.6	48.5	48.5
Incr Delay (d2), s/veh 85.		0.0	0.0	1.9	0.0	0.0	124.7	2.9	2.9	41.1	93.5	97.5
Initial Q Delay(d3),s/veh 0.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/36.		0.0	0.0	10.8	0.0	0.0	16.8	10.0	10.3	2.1	18.9	18.3
LnGrp Delay(d),s/veh 116.		0.0	0.0	20.8	0.0	0.0	175.8	39.0	39.0	98.7	142.0	146.0
LnGrp LOS	F			С			F	D	D	F	F	F
Approach Vol, veh/h	7	742			459			979			758	
Approach Delay, s/veh	11	6.9			20.8			80.9			141.3	
Approach LOS		F			С			F			F	
Timer	1	2	3	4	5	6	7	8				
	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s8.		2.9		69.0	22.0	29.0		69.0				
Change Period (Y+Rc), \$ 4.	2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax),		36		63.7	* 18	23.0		63.7				
Max Q Clear Time (g_c+l13),		2.9		65.7	19.8	25.0		29.1				
Green Ext Time (p_c), s 0.	0	6.3		0.0	0.0	0.0		10.8				
Intersection Summary												
HCM 2010 Ctrl Delay			96.2									
HCM 2010 LOS			F									
Notes												

Intersection						
Int Delay, s/veh	2.2					
		NDT	CDT	CDD	CEL	CED
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	10	4	107	7	\	7
Traffic Vol, veh/h	19	380	107	16	25	95
Future Vol, veh/h	19	380	107	16	25	95
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	Free	-	Stop
Storage Length	-	-	-	50	0	65
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	22	22	22	22	22	22
Mvmt Flow	20	404	114	17	27	101
Major/Minor I	Major1	١	/lajor2		Minor2	
Conflicting Flow All	114	0	-	0	559	114
Stage 1	-	-	_	-	114	-
Stage 2	_	_	_	_	445	_
Critical Hdwy	4.32	-	-	_	6.62	6.42
Critical Hdwy Stg 1	4.32		_	_	5.62	0.42
Critical Hdwy Stg 2	-	-	-	_	5.62	-
		-	-			3.498
Follow-up Hdwy	2.398	-	-	-	3.698	
Pot Cap-1 Maneuver	1360	-	-	0	458	887
Stage 1	-	-	-	0	863	-
Stage 2	-	-	-	0	606	-
Platoon blocked, %	1010	-	-			
Mov Cap-1 Maneuver	1360	-	-	-	449	887
Mov Cap-2 Maneuver	-	-	-	-	449	-
Stage 1				_	863	-
	-	-	-			
Stage 2	-	-	-	-	594	-
	-	-	-	-	594	-
Stage 2	-	-	- - SR	-		-
Stage 2 Approach	NB	-	SB	-	SE	-
Stage 2 Approach HCM Control Delay, s	-	-	SB 0	_	SE 10.4	-
Stage 2 Approach	NB	-		-	SE	-
Stage 2 Approach HCM Control Delay, s HCM LOS	NB 0.4	-	0	-	SE 10.4 B	-
Stage 2 Approach HCM Control Delay, s	NB 0.4	- - NBL	0	SELn1 !	SE 10.4 B	SBT
Stage 2 Approach HCM Control Delay, s HCM LOS	NB 0.4	NBL 1360	0	-	SE 10.4 B	SBT
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	NB 0.4		0 NBT S	SELn1 :	SE 10.4 B SELn2 887	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	NB 0.4	1360	0 NBT S	- SELn1 ! 449	SE 10.4 B SELn2 887	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	NB 0.4	1360 0.015	NBT S	SELn1: 449 0.059	SE 10.4 B SELn2 887 0.114	-
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	NB 0.4	1360 0.015 7.7	0 NBT :	SELn1 9 449 0.059 13.5	SE 10.4 B SELn2 887 0.114 9.6	- - -

	ၨ	→	•	•	←	•	•	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	7	↑	7	ሻ	∱ β		ሻ	∱ ∱	
Traffic Volume (veh/h)	219	300	162	66	204	52	199	368	44	96	413	180
Future Volume (veh/h)	219	300	162	66	204	52	199	368	44	96	413	180
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1652	1652	1652	1652	1652	1652	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	238	326	176	72	222	57	216	400	48	104	449	196
Adj No. of Lanes	1	1	1	1	1	1	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	256	515	437	89	340	288	208	915	109	130	585	253
Arrive On Green	0.16	0.31	0.31	0.06	0.21	0.21	0.12	0.30	0.30	0.08	0.26	0.26
Sat Flow, veh/h	1573	1652	1402	1573	1652	1400	1675	3008	359	1675	2273	984
Grp Volume(v), veh/h	238	326	176	72	222	57	216	221	227	104	329	316
Grp Sat Flow(s),veh/h/ln	1573	1652	1402	1573	1652	1400	1675	1671	1696	1675	1671	1586
Q Serve(g_s), s	11.8	13.3	7.8	3.6	9.7	2.7	9.8	8.4	8.5	4.8	14.3	14.6
Cycle Q Clear(g_c), s	11.8	13.3	7.8	3.6	9.7	2.7	9.8	8.4	8.5	4.8	14.3	14.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.21	1.00		0.62
Lane Grp Cap(c), veh/h	256	515	437	89	340	288	208	508	516	130	430	408
V/C Ratio(X)	0.93	0.63	0.40	0.81	0.65	0.20	1.04	0.44	0.44	0.80	0.76	0.77
Avail Cap(c_a), veh/h	256	730	619	214	686	581	208	579	588	166	530	503
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.6	23.3	21.4	36.8	28.7	25.9	34.5	22.0	22.0	35.7	27.0	27.1
Incr Delay (d2), s/veh	38.1	1.3	0.6	15.7	2.1	0.3	72.2	0.6	0.6	18.8	5.3	5.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.8	6.3	3.1	1.9	4.6	1.0	8.6	4.0	4.1	2.9	7.2	7.0
LnGrp Delay(d),s/veh	70.6	24.6	22.0	52.5	30.9	26.2	106.8	22.6	22.6	54.5	32.3	33.0
LnGrp LOS	E	С	С	D	С	С	F	С	С	D	С	С
Approach Vol, veh/h		740			351			664			749	
Approach Delay, s/veh		38.8			34.5			50.0			35.7	
Approach LOS		D			С			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.3	30.0	8.7	29.8	14.0	26.3	17.0	21.5				
Change Period (Y+Rc), s	* 4.2	* 6	* 4.2	5.3	* 4.2	6.0	* 4.2	5.3				
Max Green Setting (Gmax), s	* 7.8	* 27	* 11	34.8	* 9.8	25.0	* 13	32.7				
Max Q Clear Time (g_c+I1), s	6.8	10.5	5.6	15.3	11.8	16.6	13.8	11.7				
Green Ext Time (p_c), s	0.0	5.5	0.1	3.7	0.0	3.7	0.0	3.7				
Intersection Summary												
HCM 2010 Ctrl Delay			40.2									
HCM 2010 LOS			D									
Notes												

	•	→	•	•	←	•	•	†	~	\	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	•	7	ሻ	∱ ∱		ሻ	∱ ∱	
Traffic Volume (veh/h)	163	250	300	52	301	87	288	601	51	42	480	205
Future Volume (veh/h)	163	250	300	52	301	87	288	601	51	42	480	205
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1652	1652	1652	1652	1652	1652	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	170	260	312	54	314	91	300	626	53	44	500	214
Adj No. of Lanes	1	1	1	1	1	1	1	2	0	1	2	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	15	15	15	15	15	15	8	1201	8	8	8	8
Cap, veh/h	160	517	438	66	418	354	268	1201	102	54	589	251
Arrive On Green	0.10	0.31	0.31	0.04	0.25 1652	0.25	0.16	0.39	0.39	0.03	0.26	0.26
Sat Flow, veh/h	1573	1652	1402	1573		1401	1675	3120	264	1675	2286	973
Grp Volume(v), veh/h	170	260	312	54	314	91	300	335	344	44	365	349
Grp Sat Flow(s), veh/h/ln	1573	1652	1402	1573	1652	1401	1675	1671	1713	1675	1671	1588
Q Serve(g_s), s	8.8	11.1	17.0	2.9	15.1	4.5	13.8	13.3	13.4	2.3	17.9	18.1
Cycle Q Clear(g_c), s	8.8	11.1	17.0	2.9	15.1	4.5	13.8	13.3	13.4	2.3	17.9	18.1
Prop In Lane	1.00	E17	1.00 438	1.00	410	1.00	1.00	411	0.15	1.00 54	420	0.61
Lane Grp Cap(c), veh/h	160 1.06	517 0.50	0.71	66 0.82	418 0.75	354 0.26	268 1.12	644 0.52	659 0.52	0.82	430 0.85	409 0.85
V/C Ratio(X) Avail Cap(c_a), veh/h	160	671	570	117	625	530	268	644	659	132	484	459
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.8	24.2	26.2	41.0	29.8	25.8	36.3	20.4	20.4	41.5	30.5	30.5
Incr Delay (d2), s/veh	88.1	0.8	2.9	20.9	2.8	0.4	91.4	0.8	0.7	24.6	12.2	13.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.7	5.2	6.9	1.7	7.2	1.8	13.1	6.3	6.4	1.4	9.7	9.5
LnGrp Delay(d),s/veh	126.9	25.0	29.1	61.9	32.6	26.2	127.7	21.2	21.2	66.1	42.6	43.9
LnGrp LOS	F	23.0 C	C C	E	C	20.2 C	F	C C	C C	E	72.0 D	43.7 D
Approach Vol, veh/h	'	742		<u> </u>	459		•	979			758	
Approach Delay, s/veh		50.1			34.7			53.8			44.6	
Approach LOS		D			C C			D			D	
											D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.0	39.3	7.8	32.3	18.0	28.2	13.0	27.1				
Change Period (Y+Rc), s	* 4.2	* 6	* 4.2	5.3	* 4.2	6.0	* 4.2	5.3				
Max Green Setting (Gmax), s	* 6.8	* 32	* 6.4	35.1	* 14	25.0	* 8.8	32.7				
Max Q Clear Time (g_c+I1), s	4.3	15.4	4.9	19.0	15.8	20.1	10.8	17.1				
Green Ext Time (p_c), s	0.0	7.2	0.0	4.2	0.0	2.2	0.0	4.1				
Intersection Summary												
HCM 2010 Ctrl Delay			47.5									
HCM 2010 LOS			D									
Notes												

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	Т	R	L	L	Т	T	R	L	T	R
Maximum Queue (ft)	131	216	262	162	335	419	749	162	53	110	172	132
Average Queue (ft)	34	129	180	47	228	259	159	92	10	28	52	49
95th Queue (ft)	79	209	272	104	352	402	453	164	35	69	113	101
Link Distance (ft)		2611	2611				774	774				
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			250	250	250			100	150		250
Storage Blk Time (%)			1		6	11		7			1	
Queuing Penalty (veh)			2		17	31		4			2	

Intersection: 1: Orange Avenue & North Avenue

Movement	NB	SB	SB	SB	SB
Directions Served	R	L	T	T	R
Maximum Queue (ft)	82	129	156	182	146
Average Queue (ft)	37	37	87	84	52
95th Queue (ft)	67	84	136	154	105
Link Distance (ft)			208	208	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	250	100			150
Storage Blk Time (%)		5	3	1	1
Queuing Penalty (veh)		8	2	2	1

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB	SB	
Directions Served	T	T	R	L	L	T	T	L	L	R	R	
Maximum Queue (ft)	319	138	285	113	112	207	184	105	210	268	273	
Average Queue (ft)	141	79	120	16	68	96	75	42	79	184	107	
95th Queue (ft)	240	141	232	62	104	177	138	86	143	258	218	
Link Distance (ft)	774	774				771	771			1043		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)			300	300	300			300	300		300	
Storage Blk Time (%)			0									
Queuing Penalty (veh)			0									

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	NB	
Directions Served	L	L	T	T	T	T	R	L	L	R	
Maximum Queue (ft)	136	142	129	137	248	232	114	140	198	94	
Average Queue (ft)	47	87	47	53	143	112	37	58	77	42	
95th Queue (ft)	106	139	102	119	247	217	88	113	153	84	
Link Distance (ft)			771	771	850	850			998		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	300	300					300	300		300	
Storage Blk Time (%)											
Queuing Penalty (veh)											

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	Т	R	L	Т	R	L
Maximum Queue (ft)	172	158	154	54	126	173	140	80	170	125	52	45
Average Queue (ft)	71	62	55	22	48	100	65	19	57	24	20	8
95th Queue (ft)	133	128	125	54	102	155	134	51	120	69	43	30
Link Distance (ft)		850	850			2586	2586			1732		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			250	250			250	250		250	250
Storage Blk Time (%)												
Queuing Penalty (veh)												

Intersection: 5: Cedar Avenue & North Ave

Movement	SB	SB
Directions Served	Ţ	R
Maximum Queue (ft)	109	60
Average Queue (ft)	32	17
95th Queue (ft)	77	46
Link Distance (ft)	1294	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		250
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	T	R	L	T	R	L	T	TR	L	T	TR
Maximum Queue (ft)	302	292	96	171	246	97	364	426	186	174	180	232
Average Queue (ft)	158	129	46	57	112	29	143	100	108	62	90	124
95th Queue (ft)	247	241	76	122	194	71	276	226	174	125	156	192
Link Distance (ft)		2528			4573			5286	5286		5279	5279
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250		250	250		250	245			150		
Storage Blk Time (%)	0	0			0		6			1	0	
Queuing Penalty (veh)	2	1			0		11			1	0	

Intersection: 8: Cedar Avenue & Parkway Drive

Movement	NB	SE	SE
Directions Served	LT	L	R
Maximum Queue (ft)	72	185	139
Average Queue (ft)	14	34	56
95th Queue (ft)	52	92	123
Link Distance (ft)	3472		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			65
Storage Blk Time (%)		0	6
Queuing Penalty (veh)		1	3

Zone Summary

Zone wide Queuing Penalty: 89

Intersection: 1: Orange Avenue & North Avenue

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	Т	R	L	Т	R
Maximum Queue (ft)	349	373	489	370	186	210	365	352	220	250	319	334
Average Queue (ft)	149	210	220	41	68	94	163	164	15	115	250	257
95th Queue (ft)	269	331	363	148	140	164	295	311	82	231	353	350
Link Distance (ft)		2611	2611				774	774				
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			250	250	250			100	150		250
Storage Blk Time (%)	2	5	7				4	25		1	27	8
Queuing Penalty (veh)	6	8	7				11	7		15	245	43

Intersection: 1: Orange Avenue & North Avenue

Movement	NB	SB	SB	SB	SB
Directions Served	R	L	T	T	R
Maximum Queue (ft)	310	152	204	169	91
Average Queue (ft)	176	68	51	31	38
95th Queue (ft)	311	125	115	94	76
Link Distance (ft)			208	208	
Upstream Blk Time (%)			0		
Queuing Penalty (veh)			0		
Storage Bay Dist (ft)	250	100			150
Storage Blk Time (%)	1	9	2	0	
Queuing Penalty (veh)	4	5	2	0	

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB	SB	
Directions Served	T	Т	R	L	L	T	Т	L	L	R	R	
Maximum Queue (ft)	340	287	181	85	147	177	290	85	119	142	79	
Average Queue (ft)	188	120	100	27	77	42	28	18	58	72	22	
95th Queue (ft)	300	229	168	61	129	107	120	51	103	117	59	
Link Distance (ft)	774	774				771	771			1043		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)			300	300	300			300	300		300	
Storage Blk Time (%)		0										
Queuing Penalty (veh)		0										

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	NB	
Directions Served	L	L	T	T	T	T	R	L	L	R	
Maximum Queue (ft)	167	222	145	129	265	228	166	189	216	110	
Average Queue (ft)	81	116	35	41	147	118	99	57	96	43	
95th Queue (ft)	142	191	82	90	241	201	157	136	179	86	
Link Distance (ft)			771	771	850	850			998		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	300	300					300	300		300	
Storage Blk Time (%)											
Queuing Penalty (veh)											

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	Т	Т	R	L	T	R	L
Maximum Queue (ft)	130	315	272	59	186	265	302	54	274	127	184	84
Average Queue (ft)	40	146	110	6	97	115	150	8	172	55	50	18
95th Queue (ft)	101	255	211	26	162	202	248	33	258	110	124	56
Link Distance (ft)		850	850			2586	2586			1732		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			250	250			250	250		250	250
Storage Blk Time (%)		1	0			1	1		2			
Queuing Penalty (veh)		0	0			1	0		4			

Intersection: 5: Cedar Avenue & North Ave

Movement	SB	SB
Directions Served	Ţ	R
Maximum Queue (ft)	64	64
Average Queue (ft)	19	23
95th Queue (ft)	52	53
Link Distance (ft)	1294	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		250
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	T	R	L	T	TR	L	T	TR
Maximum Queue (ft)	370	1189	270	176	291	94	365	805	682	68	267	362
Average Queue (ft)	228	255	94	54	174	43	348	478	207	27	153	189
95th Queue (ft)	393	607	193	116	277	85	430	811	474	57	243	299
Link Distance (ft)		2528			4573			5286	5286		5279	5279
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250		150	250		250	245			150		
Storage Blk Time (%)	26	6	1		2		81	0			12	
Queuing Penalty (veh)	142	28	5		3		244	0			5	

Intersection: 8: Cedar Avenue & Parkway Drive

Movement	SE	SE
Directions Served	L	R
Maximum Queue (ft)	33	49
Average Queue (ft)	6	13
95th Queue (ft)	20	37
Link Distance (ft)		
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		65
Storage Blk Time (%)		0
Queuing Penalty (veh)		0

Zone Summary

Zone wide Queuing Penalty: 785

Traffic Engineering, Transportation Planning, & Parking Solutions

info@JLBtraffic.com

	۶	→	•	F	•	←	•	1	†	/	/	+
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	, J	† †	7		ሽኘ	^	7	¥	†	77	, N	^
Traffic Volume (vph)	86	627	134	54	737	591	57	31	90	194	225	339
Future Volume (vph)	86	627	134	54	737	591	57	31	90	194	225	339
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	0.95	1.00		0.97	0.95	1.00	1.00	1.00	0.88	1.00	0.95
Frpb, ped/bikes	1.00	1.00	0.99		1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1543	3085	1360		3018	3085	1345	1543	1624	2369	1543	3085
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1543	3085	1360		3018	3085	1345	1543	1624	2369	1543	3085
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	93	682	146	59	801	642	62	34	98	211	245	368
RTOR Reduction (vph)	0	0	107	0	0	0	36	0	0	179	0	0
Lane Group Flow (vph)	93	682	39	0	860	642	26	34	98	32	245	368
Confl. Peds. (#/hr)			3				3			3		
Heavy Vehicles (%)	17%	17%	17%	3%	17%	17%	17%	17%	17%	17%	17%	17%
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8	. 0	5	2		1	6
Permitted Phases	•	•	4				8		_	2	•	J
Actuated Green, G (s)	9.1	27.1	27.1		25.1	43.1	43.1	3.8	15.5	15.5	14.0	25.7
Effective Green, g (s)	9.1	27.1	27.1		25.1	43.1	43.1	3.8	15.5	15.5	14.0	25.7
Actuated g/C Ratio	0.09	0.27	0.27		0.25	0.43	0.43	0.04	0.15	0.15	0.14	0.25
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	138	824	363		747	1311	571	57	248	362	213	781
v/s Ratio Prot	0.06	c0.22	000		c0.28	0.21	071	0.02	0.06	002	c0.16	c0.12
v/s Ratio Perm	0.00	00.22	0.03		00.20	0.21	0.02	0.02	0.00	0.01	00.10	00.12
v/c Ratio	0.67	0.83	0.11		1.15	0.49	0.05	0.60	0.40	0.09	1.15	0.47
Uniform Delay, d1	44.7	35.0	28.0		38.2	21.2	17.1	48.0	38.7	36.9	43.7	32.1
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	12.2	6.9	0.1		83.1	0.3	0.0	15.6	1.0	0.1	108.1	0.5
Delay (s)	57.0	41.8	28.2		121.2	21.5	17.1	63.7	39.8	37.0	151.8	32.5
Level of Service	E	D	C		F	C	В	E	D	D	F	C
Approach Delay (s)	_	41.2			•	76.2		_	40.4		•	68.7
Approach LOS		D				E			D			E
Intersection Summary												
HCM 2000 Control Delay			62.2	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capac	city ratio		0.93									
Actuated Cycle Length (s)			101.4		um of lost				19.7			
Intersection Capacity Utilizat	ion		78.5%	IC	CU Level of	of Service	!		D			
Analysis Period (min)			15									
c Critical Lane Group												

Laric Configurations Traffic Volume (vph) 165 Future Volume (vph) 165 Future Volume (vph) 165 Ideal Flow (vphpl) 1900 Total Lost time (s) 6.0 Lane Util. Factor 1.00 Frpb, ped/bikes 0.98 Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Effective Green, g (s) 25.7 Effective Green, g (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS Intersection Summary		0.00
Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frpb, ped/bikes Flpb, ped/bikes Flpb, ped/bikes Flt Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Flt Permitted Satd. Flow (perm) Satd. Fl	Movement	SBR
Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frpb, ped/bikes Flpb, ped/bikes Flpb, ped/bikes Flt Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Flt Permitted Satd. Flow (perm) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Confl. Peds. (#/hr) Heavy Vehicles (%) Turn Type Perm Protected Phases Permitted Phases Permitted Phases Permitted Phases Permitted Phases Permitted Phases Octuated Green, G (s) Effective Green, g (s) Vehicle Extension (s) Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Prot V/s Ratio Port V/s Ratio Perm 0.03 V/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 Delay (s) Level of Service C Approach LOS		
Ideal Flow (vphpl) 1900 Total Lost time (s) 6.0 Lane Util. Factor 1.00 Frpb, ped/bikes 0.98 Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 P		
Total Lost time (s) Lane Util. Factor 1.00 Frpb, ped/bikes 1.00 Frt 0.85 Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 0.25 Clearance Time (s) 0.40 Vehicle Extension (s) 1.00 Lane Grp Cap (vph) 1.00 Vehicle Extension (s) 1.00 Incremental Delay, d1 Progression Factor 1.00 Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Lane Util. Factor Frpb, ped/bikes Flpb, ped/bikes Flpb, ped/bikes Flt Protected Satd. Flow (prot) Fit Permitted 1.00 Satd. Flow (prot) Flt Permitted 1.00 Satd. Flow (perm) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) 25.7 Effective Green, g (s) Actuated g/C Ratio 0.25 Clearance Time (s) Vehicle Extension (s) 1.00 Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 Progression Factor 1.00 Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Frpb, ped/bikes Flpb, ped/bikes Flpb, ped/bikes Fit O.85 Fit Protected 1.00 Satd. Flow (prot) Fit Permitted 1.00 Satd. Flow (perm) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 25.7 Effective Green, g (s) Actuated g/C Ratio 0.25 Clearance Time (s) Vehicle Extension (s) 1.00 Lane Grp Cap (vph) 1.01 V/s Ratio Prot 1.00 V/s Ratio Perm 1.00 Incremental Delay, d1 Progression Factor 1.00 Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Fipb, ped/bikes 1.00 Frt 0.85 Fit Protected 1.00 Satd. Flow (prot) 1359 Fit Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach		
Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS		
Fit Protected 1.00 Satd. Flow (prot) 1359 Fit Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS		
Satd. Flow (prot) 1359 Flt Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS	Frt	0.85
Fit Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS	Flt Protected	1.00
Fit Permitted 1.00 Satd. Flow (perm) 1359 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS	Satd. Flow (prot)	1359
Satd. Flow (perm) Peak-hour factor, PHF O.92 Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Turn Type Perm Protected Phases Permitted Phases Permitted Phases Permitted Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm O.03 v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Confl. Peds. (#/hr) Turn Type Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS	Satd. Flow (perm)	
Adj. Flow (vph) 179 RTOR Reduction (vph) 134 Lane Group Flow (vph) 45 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS		
RTOR Reduction (vph) Lane Group Flow (vph) Confl. Peds. (#/hr) Turn Type Perm Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Port v/s Ratio Perm 0.03 v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS	-	
Lane Group Flow (vph) Confl. Peds. (#/hr) Heavy Vehicles (%) Turn Type Perm Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Port V/s Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		
Heavy Vehicles (%) 17% Turn Type Perm Protected Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		
Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach LOS		
Protected Phases Permitted Phases 6 Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		
Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Perm V/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		Perm
Actuated Green, G (s) 25.7 Effective Green, g (s) 25.7 Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		
Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Actuated g/C Ratio 0.25 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 344 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		
Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS Approach LOS		
Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 2.0 2.0 3.0 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2		
Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service Approach Delay (s) Approach LOS		
v/s Ratio Perm 0.03 v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		344
v/c Ratio 0.13 Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		
Uniform Delay, d1 29.2 Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS	v/s Ratio Perm	0.03
Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS	v/c Ratio	0.13
Progression Factor 1.00 Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS	Uniform Delay, d1	29.2
Incremental Delay, d2 0.2 Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		1.00
Delay (s) 29.4 Level of Service C Approach Delay (s) Approach LOS		0.2
Level of Service C Approach Delay (s) Approach LOS		
Approach Delay (s) Approach LOS		
Approach LOS		
• •		
Intersection Summary		
	Intersection Summary	

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	† 1>			7
Traffic Vol, veh/h	0	1100	1349	263	0	90
Future Vol, veh/h	0	1100	1349	263	0	90
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	.# -	0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	17	17	3	0	3
Mvmt Flow	0	1196	1466	286	0	98
WWW. Flow	J	1170	1 100	200		70
		_		_		
	/lajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	876
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.33
Pot Cap-1 Maneuver	0	-	-	-	0	290
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	290
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	ED		MD		SB	
Approach	EB		WB			
HCM Control Delay, s HCM LOS	0		0		23.6	
HCM LOS					С	
1.0101 200						
Minor Lane/Major Mymt	t	EBT	WBT	WBR S	SBLn1	
Minor Lane/Major Mvmt	t	EBT -	WBT -	WBR S		
	t	EBT -	WBT - -	-	290	
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	t	EBT	WBT - -	-	290 0.337	
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	EBT	WBT	-	290 0.337 23.6	
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		EBT	- - -	- - -	290 0.337	

	۶	-	•	•	—	•	4	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	1,1	^					44		77
Traffic Volume (veh/h)	0	646	454	121	864	0	0	0	0	265	0	748
Future Volume (veh/h)	0	646	454	121	864	0	0	0	0	265	0	748
Number	7	4	14	3	8	18				1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1496	1496	1496	1496	0				1496	0	1496
Adj Flow Rate, veh/h	0	702	493	132	939	0				288	0	813
Adj No. of Lanes	0	2	1	2	2	0				2	0	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				0.92	0.92	0.92
Percent Heavy Veh, %	0	27	27	27	27	0				27	0	27
Cap, veh/h	0	924	413	452	1640	0				1004	0	813
Arrive On Green	0.00	0.32	0.32	0.33	1.00	0.00				0.36	0.00	0.36
Sat Flow, veh/h	0	2917	1272	2764	2917	0				2764	0	2238
Grp Volume(v), veh/h	0	702	493	132	939	0				288	0	813
Grp Sat Flow(s),veh/h/ln	0	1421	1272	1382	1421	0				1382	0	1119
Q Serve(g_s), s	0.0	13.3	19.5	2.1	0.0	0.0				4.4	0.0	21.8
Cycle Q Clear(g_c), s	0.0	13.3	19.5	2.1	0.0	0.0				4.4	0.0	21.8
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h	0	924	413	452	1640	0				1004	0	813
V/C Ratio(X)	0.00	0.76	1.19	0.29	0.57	0.00				0.29	0.00	1.00
Avail Cap(c_a), veh/h	0	924	413	452	1640	0				1004	0	813
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.72	0.72	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	18.2	20.2	17.6	0.0	0.0				13.6	0.0	19.1
Incr Delay (d2), s/veh	0.0	5.8	108.4	0.3	1.0	0.0				0.2	0.0	31.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	5.9	19.2	0.8	0.2	0.0				1.7	0.0	10.2
LnGrp Delay(d),s/veh	0.0	24.0	128.6	17.9	1.0	0.0				13.7	0.0	50.6
LnGrp LOS		С	F	В	A					В		D
Approach Vol, veh/h		1195			1071						1101	
Approach Delay, s/veh		67.2			3.1						41.0	
Approach LOS		Е			А						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs			3	4		6		8				
Phs Duration (G+Y+Rc), s			15.2	24.8		26.0		40.0				
Change Period (Y+Rc), s			5.3	* 5.3		4.2		5.3				
Max Green Setting (Gmax), s			5.0	* 20		21.8		28.7				
Max Q Clear Time (g_c+I1), s			4.1	21.5		23.8		2.0				
Green Ext Time (p_c), s			0.1	0.0		0.0		7.4				
Intersection Summary												
HCM 2010 Ctrl Delay			38.2									
HCM 2010 LOS			D									
Notes												

	۶	→	•	•	←	•	1	†	<i>></i>	\	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	^			^	7	ሻሻ		7			
Traffic Volume (veh/h)	279	632	0	0	736	108	249	0	69	0	0	0
Future Volume (veh/h)	279	632	0	0	736	108	249	0	69	0	0	0
Number	7	4	14	3	8	18	5	2	12			
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Adj Sat Flow, veh/h/ln	1439	1439	0	0	1439	1439	1439	0	1439			
Adj Flow Rate, veh/h	297	672	0	0	783	115	265	0	73			
Adj No. of Lanes	2	2	0	0	2	1	2	0	1			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94			
Percent Heavy Veh, %	32	32	0	0	32	32	32	0	32			
Cap, veh/h	719	1938	0	0	957	426	354	0	163			
Arrive On Green	0.54	1.00	0.00	0.00	0.35	0.35	0.13	0.00	0.13			
Sat Flow, veh/h	2659	2807	0	0	2807	1218	2659	0	1223			
Grp Volume(v), veh/h	297	672	0	0	783	115	265	0	73			
Grp Sat Flow(s), veh/h/ln	1330	1367	0	0	1367	1218	1330	0	1223			
Q Serve(g_s), s	4.0	0.0	0.0	0.0	15.6	4.1	5.8	0.0	3.3			
Cycle Q Clear(g_c), s	4.0	0.0	0.0	0.0	15.6	4.1	5.8	0.0	3.3			
Prop In Lane	1.00		0.00	0.00		1.00	1.00		1.00			
Lane Grp Cap(c), veh/h	719	1938	0	0	957	426	354	0	163			
V/C Ratio(X)	0.41	0.35	0.00	0.00	0.82	0.27	0.75	0.00	0.45			
Avail Cap(c_a), veh/h	719	1938	0	0	1171	522	434	0	200			
HCM Platoon Ratio	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	0.75	0.75	0.00	0.00	0.70	0.70	1.00	0.00	1.00			
Uniform Delay (d), s/veh	11.0	0.0	0.0	0.0	17.8	14.0	25.0	0.0	24.0			
Incr Delay (d2), s/veh	0.3	0.4	0.0	0.0	5.5	1.1	5.6	0.0	1.9			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	1.4	0.1	0.0	0.0	6.6	1.5	2.4	0.0	1.2			
LnGrp Delay(d),s/veh	11.3	0.4	0.0	0.0	23.3	15.1	30.7	0.0	25.9			
LnGrp LOS	В	A			С	В	С	000	С			
Approach Vol, veh/h		969			898			338				
Approach Delay, s/veh		3.7			22.2			29.6				
Approach LOS		А			С			С				
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4			7	8				
Phs Duration (G+Y+Rc), s		12.2		47.8			21.5	26.3				
Change Period (Y+Rc), s		* 4.2		5.3			5.3	* 5.3				
Max Green Setting (Gmax), s		* 9.8		40.7			10.8	* 26				
Max Q Clear Time (g_c+I1), s		7.8		2.0			6.0	17.6				
Green Ext Time (p_c), s		0.3		6.2			2.3	3.4				
Intersection Summary												
HCM 2010 Ctrl Delay			15.2									
HCM 2010 LOS			В									
Notes												

	ၨ	→	•	•	←	•	•	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻ	^	7	7	↑	7	7	↑	7
Traffic Volume (veh/h)	90	533	78	71	735	68	79	39	80	9	35	30
Future Volume (veh/h)	90	533	78	71	735	68	79	39	80	9	35	30
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.99	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1439	1439	1439	1439	1439	1439	1439	1439	1439	1439	1439	1439
Adj Flow Rate, veh/h	98	579	85	77	799	74	86	42	87	10	38	33
Adj No. of Lanes	1	2	1	1	2	1	1	1	1	1	1	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	32	32	32	32	32	32	32	32	32	32	32	32
Cap, veh/h	129	1159	517	88	1023	456	99	242	204	18	156	131
Arrive On Green	0.09	0.42	0.42	0.06	0.37	0.37	0.07	0.17	0.17	0.01	0.11	0.11
Sat Flow, veh/h	1371	2735	1219	1371	2735	1219	1371	1439	1217	1371	1439	1213
Grp Volume(v), veh/h	98	579	85	77	799	74	86	42	87	10	38	33
Grp Sat Flow(s),veh/h/ln	1371	1367	1219	1371	1367	1219	1371	1439	1217	1371	1439	1213
Q Serve(g_s), s	3.9	8.7	2.4	3.1	14.5	1.6	3.5	1.4	3.6	0.4	1.4	1.0
Cycle Q Clear(g_c), s	3.9	8.7	2.4	3.1	14.5	1.6	3.5	1.4	3.6	0.4	1.4	1.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	129	1159	517	88	1023	456	99	242	204	18	156	131
V/C Ratio(X)	0.76	0.50	0.16	0.88	0.78	0.16	0.87	0.17	0.43	0.57	0.24	0.25
Avail Cap(c_a), veh/h	191	1511	674	156	1443	643	171	872	737	122	821	692
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.8	11.8	10.0	26.0	15.5	5.9	25.8	20.0	20.9	27.5	22.9	10.9
Incr Delay (d2), s/veh	9.7	0.3	0.1	22.5	1.9	0.2	19.5	0.3	1.4	25.6	0.8	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	3.3	0.8	1.7	5.7	0.7	1.9	0.6	1.3	0.3	0.6	0.5
LnGrp Delay(d),s/veh	34.4	12.2	10.2	48.5	17.4	6.0	45.3	20.3	22.3	53.1	23.7	11.9
LnGrp LOS	С	В	В	D	В	A	D	C	С	D	С	В
Approach Vol, veh/h		762			950			215			81	
Approach Delay, s/veh		14.8			19.0			31.1			22.5	
Approach LOS		В			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	4.9	14.3	7.8	29.1	8.3	11.0	10.6	26.3				
Change Period (Y+Rc), s	* 4.2	4.9	* 4.2	5.3	* 4.2	4.9	5.3	* 5.3				
Max Green Setting (Gmax), s	* 5	34.0	* 6.4	31.0	* 7	32.0	7.8	* 30				
Max Q Clear Time (g_c+I1), s	2.4	5.6	5.1	10.7	5.5	3.4	5.9	16.5				
Green Ext Time (p_c), s	0.0	0.7	0.0	4.2	0.0	0.7	0.8	4.5				
Intersection Summary												
HCM 2010 Ctrl Delay			18.9									
HCM 2010 LOS			В									
Notes												

_	•	→	•	•	•	•	•	†	<u> </u>	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ ∱		7	∱ ⊅	
Traffic Volume (veh/h)	270	314	163	66	219	52	200	368	44	96	413	235
Future Volume (veh/h)	270	314	163	66	219	52	200	368	44	96	413	235
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	293	341	177	72	238	57	217	400	48	104	449	255
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	282	281	146	157	494	113	179	727	87	95	395	223
Arrive On Green	0.57	0.57	0.57	0.57	0.57	0.57	0.11	0.24	0.24	0.06	0.19	0.19
Sat Flow, veh/h	422	491	255	212	863	198	1675	3008	359	1675	2062	1163
Grp Volume(v), veh/h	811	0	0	367	0	0	217	221	227	104	363	341
Grp Sat Flow(s),veh/h/ln	1167	0	0	1272	0	0	1675	1671	1696	1675	1671	1554
Q Serve(g_s), s	50.4	0.0	0.0	0.0	0.0	0.0	12.8	13.9	14.0	6.8	23.0	23.0
Cycle Q Clear(g_c), s	68.7	0.0	0.0	18.3	0.0	0.0	12.8	13.9	14.0	6.8	23.0	23.0
Prop In Lane	0.36		0.22	0.20		0.16	1.00		0.21	1.00		0.75
Lane Grp Cap(c), veh/h	709	0	0	764	0	0	179	404	410	95	320	298
V/C Ratio(X)	1.14	0.00	0.00	0.48	0.00	0.00	1.21	0.55	0.55	1.10	1.13	1.14
Avail Cap(c_a), veh/h	709	0	0	764	0	0	179	408	414	95	320	298
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.7	0.0	0.0	14.5	0.0	0.0	53.6	39.8	39.8	56.6	48.5	48.5
Incr Delay (d2), s/veh	81.0	0.0	0.0	0.5	0.0	0.0	136.7	1.5	1.6	120.5	91.6	96.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
%ile BackOfQ(50%),veh/ln	39.4	0.0	0.0	7.1	0.0	0.0	12.7	6.6	6.7	6.3	18.7	17.9
LnGrp Delay(d),s/veh	110.7	0.0	0.0	15.0	0.0	0.0	190.3	41.3	41.4	177.1	140.1	145.4
LnGrp LOS	F			В			F	D	D	F	F	F
Approach Vol, veh/h		811			367			665			808	
Approach Delay, s/veh		110.7			15.0			89.9			147.1	
Approach LOS		F			В			F			F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.0	35.0		74.0	17.0	29.0		74.0				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 6.8	* 29		68.7	* 13	23.0		68.7				
Max Q Clear Time (q_c+l1), s		16.0		70.7	14.8	25.0		20.3				
Green Ext Time (p_c), s	0.0	5.2		0.0	0.0	0.0		11.6				
Intersection Summary												
HCM 2010 Ctrl Delay			103.3									
HCM 2010 LOS			F									
Notes												

Intersection						
Int Delay, s/veh	5.4					
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	NDL	4	<u>⊅</u>	7	<u> </u>	ĕ.
Traffic Vol, veh/h	18	147	159	24	51	201
Future Vol, veh/h	18	147	159	24	51	201
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Free	- -	Stop
Storage Length	_	-	_	50	0	65
Veh in Median Storage	. # -	0	0	-	0	-
Grade, %	-, π	0	0	_	0	-
Peak Hour Factor	92	92	92	92	92	92
	50	50	50	50	50	50
Heavy Vehicles, % Mvmt Flow				26	55	
IVIVIIIL FIOW	20	160	173	20	55	218
Major/Minor N	Major1	N	Najor2	1	Minor2	
Conflicting Flow All	173	0	-	0	372	173
Stage 1	-	-	-	-	173	-
Stage 2	-	-	-	-	199	-
Critical Hdwy	4.6	-	-	-	6.9	6.7
Critical Hdwy Stg 1	-	-	-	-	5.9	-
Critical Hdwy Stg 2	-	-	-	-	5.9	_
Follow-up Hdwy	2.65	-	_	-	3.95	3.75
Pot Cap-1 Maneuver	1160	_	-	0	544	760
Stage 1	-	_	_	0	754	-
Stage 2	-	_	_	0	732	_
Platoon blocked, %		_	_	U	702	
Mov Cap-1 Maneuver	1160	_	_	-	534	760
Mov Cap-1 Maneuver	- 1100		-	_	534	700
Stage 1	-	-	-	_	754	-
	-	_	-	-	718	-
Stage 2	-	-	-	-	/10	-
Approach	NB		SB		SE	
HCM Control Delay, s	0.9		0		11.8	
HCM LOS					В	
NA!		ND	NDT	>FL 4	251 2	CDT
Minor Lane/Major Mvm	11	NBL		SELn1		SBT
Capacity (veh/h)		1160	-	534	760	-
HCM Lane V/C Ratio		0.017		0.104		-
HCM Control Delay (s)		8.2	0	12.5	11.6	-
HCM Lane LOS		Α	Α	В	В	-
HCM 95th %tile Q(veh))	0.1	-	0.3	1.2	-

	٠	→	•	F	•	—	4	1	†	~	/	↓
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	۲	^	7		ሽኘ	† †	7	¥	†	77	J.	^
Traffic Volume (vph)	174	712	104	46	247	770	29	144	380	778	217	111
Future Volume (vph)	174	712	104	46	247	770	29	144	380	778	217	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Lane Util. Factor	1.00	0.95	1.00		0.97	0.95	1.00	1.00	1.00	0.88	1.00	0.95
Frpb, ped/bikes	1.00	1.00	0.98		1.00	1.00	0.97	1.00	1.00	0.97	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1556	3112	1371		3073	3112	1356	1556	1638	2387	1556	3112
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	1556	3112	1371		3073	3112	1356	1556	1638	2387	1556	3112
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	189	774	113	50	268	837	32	157	413	846	236	121
RTOR Reduction (vph)	0	0	80	0	0	0	23	0	0	225	0	0
Lane Group Flow (vph)	189	774	33	0	318	837	9	157	413	621	236	121
Confl. Peds. (#/hr)			3				3			3		
Heavy Vehicles (%)	16%	16%	16%	3%	16%	16%	16%	16%	16%	16%	16%	16%
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	3	8		5	2		1	6
Permitted Phases			4				8			2		
Actuated Green, G (s)	14.8	34.7	34.7		15.0	34.9	34.9	16.7	31.8	31.8	18.8	33.9
Effective Green, g (s)	14.8	34.7	34.7		15.0	34.9	34.9	16.7	31.8	31.8	18.8	33.9
Actuated g/C Ratio	0.12	0.29	0.29		0.12	0.29	0.29	0.14	0.27	0.27	0.16	0.28
Clearance Time (s)	4.2	5.3	5.3		4.2	5.3	5.3	4.2	6.0	6.0	4.2	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	191	899	396		384	905	394	216	434	632	243	879
v/s Ratio Prot	c0.12	0.25			0.10	c0.27		0.10	0.25		c0.15	0.04
v/s Ratio Perm			0.02				0.01			c0.26		
v/c Ratio	0.99	0.86	0.08		0.83	0.92	0.02	0.73	0.95	0.98	0.97	0.14
Uniform Delay, d1	52.5	40.4	31.1		51.2	41.3	30.4	49.5	43.3	43.8	50.3	32.1
Progression Factor	1.00	1.00	1.00		0.86	0.82	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	61.4	10.6	0.4		12.7	15.5	0.1	11.5	31.0	31.2	49.4	0.1
Delay (s)	113.9	51.0	31.5		56.8	49.4	30.5	61.0	74.3	75.1	99.7	32.2
Level of Service	F	D	С		Е	D	С	Е	Е	Е	F	С
Approach Delay (s)		60.0				50.9			73.3			64.3
Approach LOS		E				D			E			Е
Intersection Summary												
HCM 2000 Control Delay			62.4	H	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	acity ratio		0.96									
Actuated Cycle Length (s)			120.0	Sı	um of los	t time (s)			19.7			
Intersection Capacity Utiliza	ation		90.2%			of Service)		Е			
Analysis Period (min)			15									
c Critical Lane Group												

Movement Lart Configurations Traffic Volume (vph) 127 Future Volume (vph) 127 Ideal Flow (vphpl) 1900 Total Lost time (s) Lane Util. Factor 1.00 Frpb, ped/bikes 1.00 Frt 0.85 Flit Protected 1.00 Satd. Flow (prot) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 138 RTOR Reduction (vph) 20 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 39 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) 23.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 0.28 Clearance Time (s) 0.28 Clearance Time (s) 0.10 Uniform Delay, d1 Progression Factor 1.00 Incremental Delay, d2 Delay (s) Level of Service Approach LOS Intersection Summary		000
Traffic Volume (vph) 127 Future Volume (vph) 127 Ideal Flow (vphpl) 1900 Total Lost time (s) 6.0 Lane Util. Factor 1.00 Frpb, ped/bikes 0.98 Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 138 RTOR Reduction (vph) 139 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Permited Phases Permitted Phases Permitted Phases Permitted Phases Per		
Future Volume (vph) 127 Ideal Flow (vphpl) 1900 Total Lost time (s) 6.0 Lane Util. Factor 1.00 Frpb, ped/bikes 0.98 Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS		
Ideal Flow (vphpl) 1900 Total Lost time (s) 6.0 Lane Util. Factor 1.00 Frpb, ped/bikes 0.98 Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases 6 Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Pr		
Total Lost time (s) Lane Util. Factor 1.00 Frpb, ped/bikes 1.00 Frt 0.85 Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 26 Effective Green, g (s) 33.9 Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Prot V/s Ratio Prot V/s Ratio Perm 0.03 V/c Ratio 0.10 Uniform Delay, d1 Progression Factor 1.00 Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Lane Util. Factor Frpb, ped/bikes Flpb, ped/bikes Flpb, ped/bikes Flt Protected Satd. Flow (prot) Flt Permitted 1.00 Satd. Flow (perm) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Prot v/s Ratio Prot v/s Ratio Prot v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Frpb, ped/bikes Flpb, ped/bikes Flpb, ped/bikes Flt Protected 1.00 Satd. Flow (prot) Flt Permitted 1.00 Satd. Flow (perm) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio 0.28 Clearance Time (s) Vehicle Extension (s) 1.00 Lane Grp Cap (vph) 1.31.8 Progression Factor 1.00 Incremental Delay, d1 Progression Factor 1.00 Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Flpb, ped/bikes 1.00 Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases 6 Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach L		
Frt 0.85 Flt Protected 1.00 Satd. Flow (prot) 1370 Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases 6 Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Port v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS	Frpb, ped/bikes	0.98
Fit Protected 1.00 Satd. Flow (prot) 1370 Fit Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Permitted Phases 6 Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 1.00 Level of Service C Approach LOS	Flpb, ped/bikes	1.00
Satd. Flow (prot) Flt Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 20 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 31 Heavy Vehicles (%) 50 Turn Type 70 Perm Protected Phases 70 Permitted Phases 71 Permitted Phases 71 Permitted Phases 72 Permitted Phases 73 Permitted Phases 74 Permitted Phases 75 Permitted Phases 76 Permitted Phases 76 Permitted Phases 76 Permitted Phases 76 Permitted Phases 77 Perm Protected Phases 78 Permitted Phases 78 Pe	Frt	0.85
Fit Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases 6 Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS	Flt Protected	1.00
Fit Permitted 1.00 Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS	Satd. Flow (prot)	1370
Satd. Flow (perm) 1370 Peak-hour factor, PHF 0.92 Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS		
Peak-hour factor, PHF Adj. Flow (vph) 138 RTOR Reduction (vph) 139 Confl. Peds. (#/hr) 146 Turn Type Protected Phases Permitted Phases Permitted Phases Peffective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) 130 Lane Grp Cap (vph) 131 V/s Ratio Prot 132 V/s Ratio Prot 134 V/s Ratio Port 135 V/c Ratio 136 Uniform Delay, d1 Progression Factor 137 Progression Factor 138 Progression Delay, d2 Delay (s) Level of Service Approach LOS Approach LOS		
Adj. Flow (vph) 138 RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Permitted Phases 6 Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS		
RTOR Reduction (vph) 99 Lane Group Flow (vph) 39 Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Port v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS		
Lane Group Flow (vph) Confl. Peds. (#/hr) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Port v/s Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Confl. Peds. (#/hr) 3 Heavy Vehicles (%) 16% Turn Type Perm Protected Phases Permitted Phases 6 Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS		
Heavy Vehicles (%) Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Turn Type Perm Protected Phases Permitted Phases Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS		
Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Clearance Time (s) Clearance Time (s) Actuated Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Perm V/s Ratio Perm Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Perm Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS Assistance (s)		Perm
Actuated Green, G (s) 33.9 Effective Green, g (s) 33.9 Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach LOS		,
Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Perm 0.03 V/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS Action 33.9 Actuated g/C Ratio 0.20 387 387 387 387 387 388 387 488 489 489 489 489 489 489 489 489 489		
Actuated g/C Ratio 0.28 Clearance Time (s) 6.0 Vehicle Extension (s) 3.0 Lane Grp Cap (vph) 387 v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS	,	
Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS 3.0 3.0 3.0 3.0 0.03 0.10 1.00		
Lane Grp Cap (vph) V/s Ratio Prot V/s Ratio Perm O.03 V/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS 387 387 387 387 388 0.10		
v/s Ratio Prot v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
v/s Ratio Perm 0.03 v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS		387
v/c Ratio 0.10 Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS		
Uniform Delay, d1 31.8 Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS	v/s Ratio Perm	0.03
Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS	v/c Ratio	0.10
Progression Factor 1.00 Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS	Uniform Delay, d1	31.8
Incremental Delay, d2 0.1 Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS		1.00
Delay (s) 31.9 Level of Service C Approach Delay (s) Approach LOS		0.1
Level of Service C Approach Delay (s) Approach LOS		
Approach Delay (s) Approach LOS		
Approach LOS		
• •		
Intersection Summary		
	Intersection Summary	

Intersection						
Int Delay, s/veh	0.5					
		EDT	WDT	WDD	CDI	CDD
Movement Lana Configurations	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	0	^	†	200	0	7
Traffic Vol, veh/h	0	1753	1002	209	0	90
Future Vol, veh/h	0	1753	1002	209	0	90
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	17	17	3	0	3
Mvmt Flow	0	1905	1089	227	0	98
Major/Minor M	1ajor1	N	Major2	N	/linor2	
			viajuiz			658
Conflicting Flow All	-	0	-	0	-	008
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.33
Pot Cap-1 Maneuver	0	-	-	-	0	404
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	404
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	_	-	-	-
g						
			14.5		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		16.7	
HCM LOS					С	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	SRI n1	
		LDT	VVDI			
Capacity (veh/h)		-	-	-	101	
HCM Caratast Pater (2)		-	-		0.242	
HCM Control Delay (s)		-	-	-		
HCM Lane LOS		-	-	-	С	
HCM 95th %tile Q(veh)			_	_	0.9	

	۶	→	•	•	←	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻሻ	^					1,1		77
Traffic Volume (veh/h)	0	1291	462	153	878	0	0	0	0	129	0	333
Future Volume (veh/h)	0	1291	462	153	878	0	0	0	0	129	0	333
Number	7	4	14	3	8	18				1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1557	1557	1557	1557	0				1557	0	1557
Adj Flow Rate, veh/h	0	1373	491	163	934	0				137	0	354
Adj No. of Lanes	0	2	1	2	2	0				2	0	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94				0.94	0.94	0.94
Percent Heavy Veh, %	0	22	22	22	22	0				22	0	22
Cap, veh/h	0	1573	704	264	2106	0				374	0	303
Arrive On Green	0.00	0.36	0.36	0.18	1.00	0.00				0.13	0.00	0.13
Sat Flow, veh/h	0	3037	1324	2877	3037	0				2877	0	2330
Grp Volume(v), veh/h	0	1373	491	163	934	0				137	0	354
Grp Sat Flow(s),veh/h/ln	0	1480	1324	1439	1480	0				1439	0	1165
Q Serve(g_s), s	0.0	26.0	19.1	3.1	0.0	0.0				2.6	0.0	7.8
Cycle Q Clear(g_c), s	0.0	26.0	19.1	3.1	0.0	0.0				2.6	0.0	7.8
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h	0	1573	704	264	2106	0				374	0	303
V/C Ratio(X)	0.00	0.87	0.70	0.62	0.44	0.00				0.37	0.00	1.17
Avail Cap(c_a), veh/h	0	1623	726	269	2106	0				374	0	303
HCM Platoon Ratio	1.00	0.67	0.67	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.55	0.55	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh	0.0	17.4	15.2	23.5	0.0	0.0				23.8	0.0	26.1
Incr Delay (d2), s/veh	0.0	7.0	5.7	2.3	0.4	0.0				0.6	0.0	105.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	12.1	8.0	1.3	0.1	0.0				1.1	0.0	6.9
LnGrp Delay(d),s/veh	0.0	24.4	20.9	25.8	0.4	0.0				24.4	0.0	131.7
LnGrp LOS		С	С	С	А					С		F
Approach Vol, veh/h		1864			1097						491	
Approach Delay, s/veh		23.5			4.1						101.7	
Approach LOS		С			А						F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs			3	4		6		8				
Phs Duration (G+Y+Rc), s			10.8	37.2		12.0		48.0				
Change Period (Y+Rc), s			5.3	* 5.3		4.2		5.3				
Max Green Setting (Gmax), s			5.6	* 33		7.8		42.7				
Max Q Clear Time (g_c+I1), s			5.1	28.0		9.8		2.0				
Green Ext Time (p_c), s			0.3	3.9		0.0		8.2				
Intersection Summary												
HCM 2010 Ctrl Delay			28.5									
HCM 2010 LOS			С									
Notes												

		→	•	•	←	•	•	†	~	\	 	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^			44	7	16.00		7			
Traffic Volume (veh/h)	737	683	0	0	719	403	312	0	104	0	0	0
Future Volume (veh/h)	737	683	0	0	719	403	312	0	104	0	0	0
Number	7	4	14	3	8	18	5	2	12			
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Adj Sat Flow, veh/h/ln	1652	1652	0	0	1652	1652	1652	0	1652			
Adj Flow Rate, veh/h	801	742	0	0	782	438	339	0	113			
Adj No. of Lanes	2	2	0	0	2	1	2	0	1			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	15	15	0	0	15	15	15	0	15			
Cap, veh/h	916	2197	0	0	978	436	433	0	199			
Arrive On Green	0.50	1.00	0.00	0.00	0.62	0.62	0.14	0.00	0.14			
Sat Flow, veh/h	3053	3222	0	0	3222	1398	3053	0	1404			
Grp Volume(v), veh/h	801	742	0	0	782	438	339	0	113			
Grp Sat Flow(s),veh/h/ln	1526	1570	0	0	1570	1398	1526	0	1404			
Q Serve(g_s), s	14.0	0.0	0.0	0.0	11.2	18.7	6.4	0.0	4.5			
Cycle Q Clear(g_c), s	14.0	0.0	0.0	0.0	11.2	18.7	6.4	0.0	4.5			
Prop In Lane	1.00		0.00	0.00		1.00	1.00		1.00			
Lane Grp Cap(c), veh/h	916	2197	0	0	978	436	433	0	199			
V/C Ratio(X)	0.87	0.34	0.00	0.00	0.80	1.01	0.78	0.00	0.57			
Avail Cap(c_a), veh/h	956	2197	0	0	978	436	448	0	206			
HCM Platoon Ratio	1.67	1.67	1.00	1.00	2.00	2.00	1.00	1.00	1.00			
Upstream Filter(I)	0.47	0.47	0.00	0.00	0.75	0.75	1.00	0.00	1.00			
Uniform Delay (d), s/veh	14.0	0.0	0.0	0.0	9.9	11.3	24.9	0.0	24.0			
Incr Delay (d2), s/veh	4.4	0.2	0.0	0.0	5.2	38.6	8.6	0.0	3.4			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	6.3	0.1	0.0	0.0	5.3	11.4	3.2	0.0	1.9			
LnGrp Delay(d),s/veh	18.4	0.2	0.0	0.0	15.1	49.9	33.4	0.0	27.5			
LnGrp LOS	В	Α			В	F	С		С			
Approach Vol, veh/h		1543			1220			452				
Approach Delay, s/veh		9.6			27.6			31.9				
Approach LOS		Α			С			С				
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4			7	8				
Phs Duration (G+Y+Rc), s		12.7		47.3			23.3	24.0				
Change Period (Y+Rc), s		* 4.2		5.3			5.3	* 5.3				
Max Green Setting (Gmax), s		* 8.8		41.7			18.8	* 19				
Max Q Clear Time (g_c+l1), s		8.4		2.0			16.0	20.7				
Green Ext Time (p_c), s		0.1		9.9			1.8	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			19.6									
HCM 2010 LOS			В									
			D									

Movement EBL Lane Configurations Traffic Volume (veh/h) 36 Future Volume (veh/h) 36 Number 7 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Adj Sat Flow, veh/h/In 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/In 1483 Q Serve(g_s), s 3.1	739 739 739 4 0	EBR 12 12 14 0	WBL 95 95 3	WBT ↑↑ 874 874	WBR 7 18	NBL 7 203	NBT ↑ 66	NBR	SBL	SBT ↑	SBR
Traffic Volume (veh/h) 36 Future Volume (veh/h) 36 Number 7 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Adj Sat Flow, veh/h/ln 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483	739 739 4 0	12 12 14 0	95 95	874	18						7
Future Volume (veh/h) 36 Number 7 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Adj Sat Flow, veh/h/ln 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483	739 4 0	12 14 0	95			203	66	124	10		
Number 7 Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Adj Sat Flow, veh/h/In 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/In 1483	1.00	14 0		874				136	13	17	45
Initial Q (Qb), veh 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Adj Sat Flow, veh/h/ln 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483	1.00	0	3		18	203	66	136	13	17	45
Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj 1.00 Adj Sat Flow, veh/h/ln 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s), veh/h/ln 1483	1.00			8	18	5	2	12	1	6	16
Parking Bus, Adj 1.00 Adj Sat Flow, veh/h/ln 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483			0	0	0	0	0	0	0	0	0
Adj Sat Flow, veh/h/ln 1557 Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s), veh/h/ln 1483		0.99	1.00		1.00	1.00		1.00	1.00		0.99
Adj Flow Rate, veh/h 39 Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s), veh/h/ln 1483	1557	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj No. of Lanes 1 Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483		1557	1557	1557	1557	1557	1557	1557	1557	1557	1557
Peak Hour Factor 0.92 Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483	803	13	103	950	20	221	72	148	14	18	49
Percent Heavy Veh, % 22 Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483	2	1	1	2	1	1	1	1	1	1	1
Cap, veh/h 46 Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s), veh/h/ln 1483	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Arrive On Green 0.06 Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s), veh/h/ln 1483	22	22	22	22	22	22	22	22	22	22	22
Sat Flow, veh/h 1483 Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483	853	380	454	1693	756	244	352	298	23	111	93
Grp Volume(v), veh/h 39 Grp Sat Flow(s),veh/h/ln 1483	0.58	0.58	0.31	0.57	0.57	0.16	0.23	0.23	0.02	0.07	0.07
Grp Sat Flow(s), veh/h/ln 1483	2959	1317	1483	2959	1320	1483	1557	1319	1483	1557	1307
	803	13	103	950	20	221	72	148	14	18	49
Q Serve(q s), s 3.1	1480	1317	1483	1480	1320	1483	1557	1319	1483	1557	1307
	30.1	0.5	6.2	24.3	8.0	17.6	4.5	5.8	1.1	1.3	3.8
Cycle Q Clear(g_c), s 3.1	30.1	0.5	6.2	24.3	8.0	17.6	4.5	5.8	1.1	1.3	3.8
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h 46	853	380	454	1693	756	244	352	298	23	111	93
V/C Ratio(X) 0.85	0.94	0.03	0.23	0.56	0.03	0.90	0.20	0.50	0.61	0.16	0.53
Avail Cap(c_a), veh/h 62	932	415	454	1693	756	257	620	525	62	415	349
HCM Platoon Ratio 2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 56.0	24.5	18.2	31.1	16.2	11.1	49.2	37.7	9.9	58.7	52.4	42.1
Incr Delay (d2), s/veh 49.9	18.7	0.2	0.3	1.3	0.1	31.5	0.3	1.3	23.1	0.7	4.6
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln 1.9	14.3	0.2	2.6	10.2	0.3	9.3	2.0	2.2	0.6	0.6	1.5
LnGrp Delay(d),s/veh 105.9	43.1	18.3	31.3	17.5	11.2	80.7	38.0	11.2	81.8	53.0	46.7
LnGrp LOS F	D	B	С	В	В	F	D	В	F	D	<u>D</u>
Approach Vol, veh/h	855			1073			441			81	
Approach Delay, s/veh	45.6			18.7			50.4			54.2	
Approach LOS	D			В			D			D	
Timer 1	2	3	4	5	6	7	8				
Assigned Phs 1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s 6.1	32.0	42.0	39.9	24.7	13.4	7.9	74.0				
Change Period (Y+Rc), s * 4.2	4.9	5.3	* 5.3	4.9	* 4.9	* 4.2	5.3				
Max Green Setting (Gmax), s * 5	47.8	10.8	* 38	20.8	* 32	* 5	43.6				
Max Q Clear Time (g_c+l1), s 3.1	7.8	8.2	32.1	19.6	5.8	5.1	26.3				
Green Ext Time (p_c), s 0.0	1.5	1.6	2.5	0.2	0.2	0.0	6.3				
Intersection Summary											
HCM 2010 Ctrl Delay											
HCM 2010 LOS		35.0									
Notes		35.0 C									

	۶	→	•	•	←	•	1	†	~	/	↓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ ⊅		7	ħβ	
Traffic Volume (veh/h)	199	261	301	52	313	87	289	601	51	42	480	244
Future Volume (veh/h)	199	261	301	52	313	87	289	601	51	42	480	244
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1652	1900	1900	1652	1900	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	207	272	314	54	326	91	301	626	53	44	500	254
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	182	202	227	92	514	137	221	958	81	55	448	227
Arrive On Green	0.53	0.53	0.53	0.53	0.53	0.53	0.13	0.31	0.31	0.03	0.21	0.21
Sat Flow, veh/h	272	380	428	110	968	258	1675	3120	264	1675	2151	1088
Grp Volume(v), veh/h	793	0	0	471	0	0	301	335	344	44	388	366
Grp Sat Flow(s),veh/h/ln	1081	0	0	1336	0	0	1675	1671	1713	1675	1671	1567
Q Serve(g_s), s	36.5	0.0	0.0	0.0	0.0	0.0	15.8	20.8	20.9	3.1	25.0	25.0
Cycle Q Clear(g_c), s	63.7	0.0	0.0	27.2	0.0	0.0	15.8	20.8	20.9	3.1	25.0	25.0
Prop In Lane	0.26		0.40	0.11	•	0.19	1.00	F40	0.15	1.00	0.40	0.69
Lane Grp Cap(c), veh/h	611	0	0	743	0	0	221	513	526	55	348	327
V/C Ratio(X)	1.30	0.00	0.00	0.63	0.00	0.00	1.36	0.65	0.65	0.80	1.11	1.12
Avail Cap(c_a), veh/h	611	1.00	1.00	743	1.00	1.00	221	513	526	67	348	327
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00 32.7	0.00	0.00	1.00	0.00	0.00	1.00 52.1	1.00 36.0	1.00	1.00 57.6	1.00 47.5	1.00 47.5
Uniform Delay (d), s/veh Incr Delay (d2), s/veh	32. <i>1</i> 145.5	0.0	0.0	19.0 1.8	0.0	0.0	190.3	2.9	36.0 2.9	41.1	82.8	86.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	44.9	0.0	0.0	11.1	0.0	0.0	19.0	10.0	10.3	2.1	19.5	18.6
LnGrp Delay(d),s/veh	178.2	0.0	0.0	20.8	0.0	0.0	242.4	39.0	39.0	98.7	130.3	134.0
LnGrp LOS	170.2 F	0.0	0.0	20.0 C	0.0	0.0	242.4 F	37.0 D	D	70.7 F	F	F
Approach Vol, veh/h		793			471		<u>'</u>	980	<u> </u>		798	
Approach Delay, s/veh		178.2			20.8			101.5			130.3	
Approach LOS		170.2 F			20.0 C			F			F	
•											'	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	8.1	42.9		69.0	20.0	31.0		69.0				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 4.8	* 36		63.7	* 16	25.0		63.7				
Max Q Clear Time (g_c+I1), s		22.9		65.7	17.8	27.0		29.2				
Green Ext Time (p_c), s	0.0	6.5		0.0	0.0	0.0		11.8				
Intersection Summary												
HCM 2010 Ctrl Delay			116.5									
HCM 2010 LOS			F									
Notes												

Intersection						
Int Delay, s/veh	2.2					
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	IIDL	4	↑	7	ሻ	7
Traffic Vol, veh/h	21	380	108	16	25	95
Future Vol, veh/h	21	380	108	16	25	95
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	_	Free	-	Stop
Storage Length	-	-	-	50	0	65
Veh in Median Storage	.# -	0	0	-	0	
Grade, %	-	0	0		0	_
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	22	22	22	22	22	22
Mymt Flow	22	404	115	17	27	101
WWIIICT IOW	22	707	110	17	21	101
Major/Minor N	Najor1	N	Major2		Minor2	
Conflicting Flow All	115	0	-	0	564	115
Stage 1	-	-	-	-	115	-
Stage 2	-	-	-	-	449	-
Critical Hdwy	4.32	-	-	-	6.62	6.42
Critical Hdwy Stg 1	-	-	-	-	5.62	-
Critical Hdwy Stg 2	-	-	-	-	5.62	-
Follow-up Hdwy	2.398	-	-	-	3.698	3.498
Pot Cap-1 Maneuver	1358	-	-	0	455	886
Stage 1	-	-	-	0	863	-
Stage 2	-	_	_	0	603	-
Platoon blocked, %		_	_	Ū		
Mov Cap-1 Maneuver	1358	-	_	_	445	886
Mov Cap-2 Maneuver	-	_	_	_	445	-
Stage 1	_	_	_	_	863	_
Stage 2	_	_	_	_	590	_
Stage 2	_			-	370	
Approach	NB		SB		SE	
HCM Control Delay, s	0.4		0		10.4	
HCM LOS					В	
Minor Long/Maior M		NDI	NDT	CEL 1	CEL 2	CDT
Minor Lane/Major Mvm	l	NBL		SELn1		SBT
Capacity (veh/h)		1358	-	445	886	-
HCM Lane V/C Ratio		0.016	-		0.114	-
HCM Control Delay (s)		7.7	0	13.6	9.6	-
HCM Lane LOS		Α	Α	В	Α	-
HCM 95th %tile Q(veh)		0.1	-	0.2	0.4	-
HCIVI 95(II %(IIIe Q(VeII)		U. I	-	0.2	0.4	-

	۶	→	•	•	←	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	•	7	ሻ	∱ ∱		ሻ	∱ ∱	
Traffic Volume (veh/h)	270	314	163	66	219	52	200	368	44	96	413	235
Future Volume (veh/h)	270	314	163	66	219	52	200	368	44	96	413	235
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1652	1652	1652	1652	1652	1652	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	293	341	177	72	238	57	217	400	48	104	449	255
Adj No. of Lanes	1	1	1	1	1	1	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	412	706	599	312	706	599	151	916	109	106	573	323
Arrive On Green	0.43	0.43	0.43	0.43	0.43	0.43	0.09	0.30	0.30	0.06	0.28	0.28
Sat Flow, veh/h	957	1652	1402	780	1652	1402	1675	3008	359	1675	2062	1163
Grp Volume(v), veh/h	293	341	177	72	238	57	217	221	227	104	363	341
Grp Sat Flow(s),veh/h/ln	957	1652	1402	780	1652	1402	1675	1671	1696	1675	1671	1554
Q Serve(g_s), s	22.3	11.3	6.3	5.6	7.3	1.8	6.8	8.0	8.1	4.7	15.2	15.3
Cycle Q Clear(g_c), s	29.6	11.3	6.3	16.8	7.3	1.8	6.8	8.0	8.1	4.7	15.2	15.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.21	1.00		0.75
Lane Grp Cap(c), veh/h	412	706	599	312	706	599	151	509	516	106	465	432
V/C Ratio(X)	0.71	0.48	0.30	0.23	0.34	0.10	1.44	0.43	0.44	0.98	0.78	0.79
Avail Cap(c_a), veh/h	416	714	606	316	714	606	151	603	612	106	552	513
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.4	15.6	14.2	21.7	14.5	12.9	34.4	21.1	21.1	35.4	25.2	25.3
Incr Delay (d2), s/veh	5.5	0.5	0.3	0.4	0.3	0.1	231.9	0.6	0.6	80.2	6.1	6.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.5	5.2	2.5	1.2	3.4	0.7	12.8	3.8	3.9	4.5	7.7	7.4
LnGrp Delay(d),s/veh	30.0	16.2	14.5	22.1	14.8	13.0	266.3	21.7	21.7	115.5	31.2	32.1
LnGrp LOS	С	В	В	С	В	В	F	С	С	F	С	С
Approach Vol, veh/h		811			367			665			808	
Approach Delay, s/veh		20.8			15.9			101.5			42.5	
Approach LOS		С			В			F			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.0	29.0		37.6	11.0	27.0		37.6				
Change Period (Y+Rc), s	* 4.2	* 6		5.3	* 4.2	6.0		5.3				
Max Green Setting (Gmax), s	* 4.8	* 27		32.7	* 6.8	25.0		32.7				
Max Q Clear Time (g_c+l1), s	6.7	10.1		31.6	8.8	17.3		18.8				
Green Ext Time (p_c), s	0.0	5.9		0.7	0.0	3.7		5.2				
Intersection Summary												
HCM 2010 Ctrl Delay			47.0									
HCM 2010 LOS			D									
Notes												

	۶	→	•	•	←	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7		†	7	ሻ	ተኈ		7	Φ₽	
Traffic Volume (veh/h)	199	261	301	52	313	87	289	601	51	42	480	244
Future Volume (veh/h)	199	261	301	52	313	87	289	601	51	42	480	244
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1652	1652	1652	1652	1652	1652	1759	1759	1900	1759	1759	1900
Adj Flow Rate, veh/h	207	272	314	54	326	91	301	626	53	44	500	254
Adj No. of Lanes	1	1	1	1	1	1	1	2	0	1	2	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	15	15	15	15	15	15	8	8	8	8	8	8
Cap, veh/h	228	573	486	66	404	343	308	1204	102	55	505	255
Arrive On Green	0.14	0.35	0.35	0.04	0.24	0.24	0.18	0.39	0.39	0.03	0.23	0.23
Sat Flow, veh/h	1573	1652	1402	1573	1652	1404	1675	3120	264	1675	2151	1088
Grp Volume(v), veh/h	207	272	314	54	326	91	301	335	344	44	388	366
Grp Sat Flow(s),veh/h/ln	1573	1652	1402	1573	1652	1404	1675	1671	1713	1675	1671	1567
Q Serve(g_s), s	13.3	13.2	19.3	3.5	19.0	5.4	18.3	15.7	15.8	2.7	23.7	23.9
Cycle Q Clear(g_c), s	13.3	13.2	19.3	3.5	19.0	5.4	18.3	15.7	15.8	2.7	23.7	23.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.15	1.00		0.69
Lane Grp Cap(c), veh/h	228	573	486	66	404	343	308	645	661	55	392	368
V/C Ratio(X)	0.91	0.47	0.65	0.81	0.81	0.27	0.98	0.52	0.52	0.80	0.99	1.00
Avail Cap(c_a), veh/h	228	607	515	152	528	449	308	645	661	111	392	368
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	43.1	26.1	28.1	48.6	36.4	31.2	41.5	24.1	24.2	49.2	39.0	39.1
Incr Delay (d2), s/veh	36.1	0.6	2.6	20.4	6.9	0.4	45.0	0.7	0.7	23.2	42.6	45.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.0	6.1	7.7	1.9	9.5	2.1	12.3	7.4	7.6	1.6	15.5	14.9
LnGrp Delay(d),s/veh	79.2	26.7	30.7	69.0	43.3	31.6	86.6	24.9	24.9	72.3	81.6	84.7
LnGrp LOS	Ε	С	С	Ε	D	С	F	С	С	Ε	F	F
Approach Vol, veh/h		793			471			980			798	
Approach Delay, s/veh		42.0			44.0			43.8			82.5	
Approach LOS		D			D			D			F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.5	45.5	8.5	40.8	23.0	30.0	19.0	30.3				
Change Period (Y+Rc), s	* 4.2	* 6	* 4.2	5.3	* 4.2	6.0	* 4.2	5.3				
Max Green Setting (Gmax), s	* 6.8	* 36	* 9.9	37.6	* 19	24.0	* 15	32.7				
Max Q Clear Time (g_c+11) , s	4.7	17.8	5.5	21.3	20.3	25.9	15.3	21.0				
Green Ext Time (p_c), s	0.0	7.8	0.0	4.4	0.0	0.0	0.0	3.8				
Intersection Summary												
HCM 2010 Ctrl Delay			53.5									
HCM 2010 LOS			D									
Notes												

Intersection: 1: Orange Avenue & North Avenue/North Ave

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	T	R	UL	L	Ţ	T	R	L	T	R
Maximum Queue (ft)	350	388	374	145	305	308	359	311	214	48	222	109
Average Queue (ft)	87	178	202	53	285	293	308	215	25	19	78	58
95th Queue (ft)	186	288	315	109	339	350	435	355	94	43	167	106
Link Distance (ft)		2611	2611				309	309				
Upstream Blk Time (%)					2	13	26	1				
Queuing Penalty (veh)					0	0	185	9				
Storage Bay Dist (ft)	250			250	250	250			100	150		250
Storage Blk Time (%)		2	4		28	52	9	17	0		2	
Queuing Penalty (veh)		2	5		84	153	68	10	0		5	

Intersection: 1: Orange Avenue & North Avenue/North Ave

Movement	NB	SB	SB	SB	SB	B24	B24
Directions Served	R	L	T	T	R	T	T
Maximum Queue (ft)	103	175	285	235	208	192	189
Average Queue (ft)	47	149	178	123	54	21	11
95th Queue (ft)	92	209	304	213	151	103	78
Link Distance (ft)			208	208		2953	2953
Upstream Blk Time (%)			16	1	0		
Queuing Penalty (veh)			0	0	0		
Storage Bay Dist (ft)	250	100			150		
Storage Blk Time (%)		46	9	3	0		
Queuing Penalty (veh)		77	21	4	0		

Intersection: 2: North Ave & Driveway

Movement	WB	WB	SB
Directions Served	T	TR	R
Maximum Queue (ft)	442	417	220
Average Queue (ft)	230	70	170
95th Queue (ft)	496	278	264
Link Distance (ft)	417	417	205
Upstream Blk Time (%)	6	0	45
Queuing Penalty (veh)	47	1	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Ave/North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB	SB	
Directions Served	T	T	R	L	L	T	Т	L	L	R	R	
Maximum Queue (ft)	346	266	327	73	113	346	212	201	314	783	350	
Average Queue (ft)	180	122	117	15	53	130	100	30	99	246	159	
95th Queue (ft)	288	227	225	51	88	280	193	92	184	464	310	
Link Distance (ft)	417	417				771	771			1043		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)			300	300	300			300	300		300	
Storage Blk Time (%)			0			1			0	5	0	
Queuing Penalty (veh)			1			1			2	32	0	

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	NB	
Directions Served	L	L	T	T	T	T	R	L	L	R	
Maximum Queue (ft)	150	176	161	198	390	285	71	171	172	110	
Average Queue (ft)	91	116	64	79	162	139	30	64	86	38	
95th Queue (ft)	159	169	125	153	298	256	64	125	146	78	
Link Distance (ft)			771	771	850	850			998		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	300	300					300	300		300	
Storage Blk Time (%)						0					
Queuing Penalty (veh)						0					

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	Т	Т	R	L	Т	R	L
Maximum Queue (ft)	133	180	185	103	145	252	280	69	155	76	125	45
Average Queue (ft)	66	87	64	33	61	143	113	18	58	18	28	7
95th Queue (ft)	127	155	137	72	120	238	220	53	126	52	69	29
Link Distance (ft)		850	850			2586	2586			1732		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			250	250			250	250		250	250
Storage Blk Time (%)						0	1					
Queuing Penalty (veh)						0	0					

Intersection: 5: Cedar Avenue & North Ave

Movement	SB	SB
Directions Served	T	R
Maximum Queue (ft)	104	51
Average Queue (ft)	37	13
95th Queue (ft)	83	37
Link Distance (ft)	1294	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		250
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Chestnut Ave & North Ave

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	T	R	L	Т	R	L	T	TR	L	T	TR
Maximum Queue (ft)	292	287	114	94	172	95	365	1468	987	162	189	219
Average Queue (ft)	150	123	48	39	86	23	325	770	139	85	107	148
95th Queue (ft)	242	229	94	83	141	66	450	1594	435	151	174	219
Link Distance (ft)		2528			4573			5286	5286		5279	5279
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250		250	250		250	245			150		
Storage Blk Time (%)	1	1					80	0		4	3	
Queuing Penalty (veh)	4	2					147	0		8	3	

Intersection: 8: Cedar Avenue & Parkway Drive

Movement	NB	SE	SE
Directions Served	LT	L	R
Maximum Queue (ft)	64	74	88
Average Queue (ft)	4	24	43
95th Queue (ft)	27	56	80
Link Distance (ft)	3472		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			65
Storage Blk Time (%)		0	1
Queuing Penalty (veh)		1	1

Zone Summary

Zone wide Queuing Penalty: 873

Intersection: 1: Orange Avenue & North Avenue/North Ave

Movement	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	T	Т	R	UL	L	T	Т	R	L	T	R
Maximum Queue (ft)	338	344	381	115	268	265	324	338	220	250	339	337
Average Queue (ft)	159	200	216	34	119	137	238	250	17	161	292	303
95th Queue (ft)	273	315	335	82	219	229	331	344	84	288	348	330
Link Distance (ft)		2611	2611				314	314				
Upstream Blk Time (%)							1	2				
Queuing Penalty (veh)							6	11				
Storage Bay Dist (ft)	250			250	250	250			100	150		250
Storage Blk Time (%)	2	3	3		0	1	5	40		12	45	25
Queuing Penalty (veh)	7	5	3		0	5	15	11		134	411	133

Intersection: 1: Orange Avenue & North Avenue/North Ave

Movement	NB	SB	SB	SB	SB	B24
Directions Served	R	L	T	T	R	T
Maximum Queue (ft)	309	174	291	208	119	56
Average Queue (ft)	258	133	124	59	43	4
95th Queue (ft)	358	203	274	160	98	26
Link Distance (ft)			208	208		2953
Upstream Blk Time (%)			5	0		
Queuing Penalty (veh)			0	0		
Storage Bay Dist (ft)	250	100			150	
Storage Blk Time (%)	2	35	0	0		
Queuing Penalty (veh)	10	19	0	0		

Intersection: 2: North Ave & Driveway

Movement	EB	WB	WB	SB	
Directions Served	T	T	TR	R	
Maximum Queue (ft)	83	184	116	118	
Average Queue (ft)	3	14	13	42	
95th Queue (ft)	27	82	65	81	
Link Distance (ft)	314	411	411	206	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 3: Parkway Drive/SR 99 SB Off-Ramp & North Ave/North Avenue

Movement	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB	SB	
Directions Served	T	Т	R	L	L	T	T	L	L	R	R	
Maximum Queue (ft)	318	260	181	134	148	192	153	124	139	270	243	
Average Queue (ft)	186	121	81	23	66	62	53	17	63	118	61	
95th Queue (ft)	289	225	144	75	118	162	135	63	124	199	144	
Link Distance (ft)	411	411				771	771			1043		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)			300	300	300			300	300		300	
Storage Blk Time (%)												
Queuing Penalty (veh)												

Intersection: 4: North Avenue & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	NB	
Directions Served	L	L	T	T	T	Т	R	L	L	R	
Maximum Queue (ft)	224	234	99	136	280	261	258	148	174	111	
Average Queue (ft)	109	142	37	44	156	127	93	57	110	42	
95th Queue (ft)	190	222	84	101	250	202	185	124	167	84	
Link Distance (ft)			771	771	850	850			998		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	300	300					300	300		300	
Storage Blk Time (%)											
Queuing Penalty (veh)											

Intersection: 5: Cedar Avenue & North Ave

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	Т	T	R	L	T	R	
Maximum Queue (ft)	85	458	413	22	192	265	347	37	368	515	164	66
Average Queue (ft)	30	196	175	5	96	147	172	3	179	85	55	13
95th Queue (ft)	68	359	313	19	161	249	301	17	337	298	118	41
Link Distance (ft)		850	850			2586	2586			1732		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250			250	250			250	250		250	250
Storage Blk Time (%)		4	3			0	2		5	0		
Queuing Penalty (veh)		2	0			0	0		10	0		

Intersection: 5: Cedar Avenue & North Ave

Movement	SB	SB
Directions Served	T	R
Maximum Queue (ft)	112	145
Average Queue (ft)	14	30
95th Queue (ft)	54	80
Link Distance (ft)	1294	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		250
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Chestnut Ave & North Ave

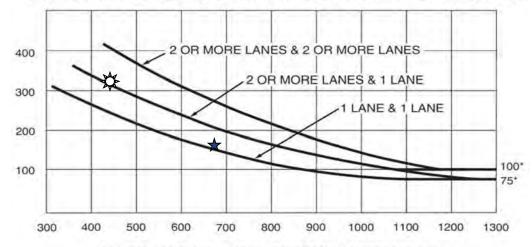
Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	T	R	L	T	R	L	T	TR	L	T	TR
Maximum Queue (ft)	364	407	370	110	360	364	364	387	253	130	332	340
Average Queue (ft)	209	163	103	55	197	62	224	152	157	46	195	234
95th Queue (ft)	343	338	244	107	306	197	322	275	241	95	285	326
Link Distance (ft)		2528			4573			5286	5286		5279	5279
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250		250	250		250	245			150		
Storage Blk Time (%)	10	1	0		3		11	0		0	23	
Queuing Penalty (veh)	55	4	0		4		34	1		0	10	

Intersection: 8: Cedar Avenue & Parkway Drive

Movement	SE	SE
Directions Served	L	R
Maximum Queue (ft)	50	33
Average Queue (ft)	6	7
95th Queue (ft)	23	23
Link Distance (ft)		
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		65
Storage Blk Time (%)	0	
Queuing Penalty (veh)	0	

Zone Summary

Zone wide Queuing Penalty: 891


Appendix K: Signal Warrants

Existing - AM (PM) Peak Hour Intersection: 3. North Avenue and State Route 99 SB Off-Ramp

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

State Route 99 SB Off-Ramp Highest Approach Volume = 324 (202) VPH

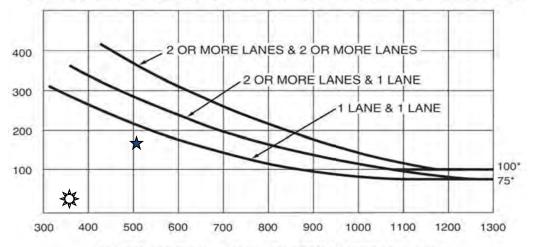
MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

North Avenue Total Volume = 450 (680) VPH

AM Peak Hour Volume – Signal Warrant is Met

★ PM Peak Hour Volume – Signal Warrant is Met



Existing - AM (PM) Peak Hour
Intersection: 4. North Avenue and State Route 99 NB On-Ramp

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

North Avenue Eastbound Left-Through Volume Highest Approach Volume = 45 (185) VPH

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

North Avenue Westbound Through-Right Volume = 354 (502) VPH

AM Peak Hour Volume – Signal Warrant is Not Met

★ PM Peak Hour Volume – Signal Warrant is Not Met

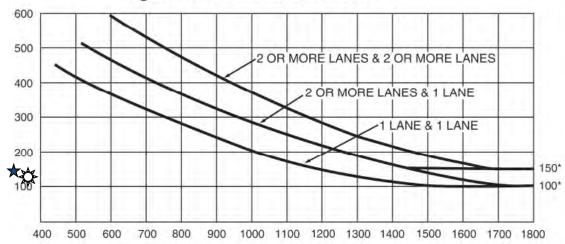
Existing - AM (PM) Peak Hour Intersection: 7. State Route 99 NB Off-Ramp and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour 600 500 2 OR MORE LANES & 2 OR MORE LANES **Minor Street** 400 2 OR MORE LANES & 1 LANE **Highest Approach** 300 Volume = 92 (73) VPH 1 LANE & 1 LANE 200 150* 100* 500 600 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 400 700

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume= 223 (193) VPH


AM Peak Hour Volume – Signal Warrant is Not Met ★ PM Peak Hour Volume – Signal Warrant is Not Met

Existing - AM (PM) Peak Hour Intersection: 8. Parkway Drive and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour

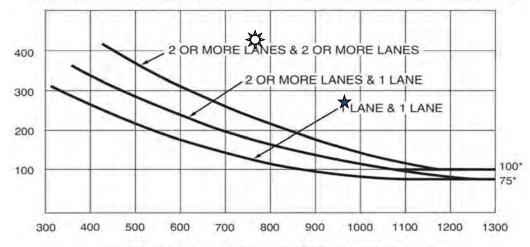
Minor Street Highest Approach Volume = 120 (138) **VPH**

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume = 252 (245) VPH

AM Peak Hour Volume – Signal Warrant is Not Met ★ PM Peak Hour Volume – Signal Warrant is Not Met



Existing plus Project - AM (PM) Peak Hour Intersection: 3. North Avenue and State Route 99 SB Off-Ramp

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

State Route 99 SB Off-Ramp Highest Approach Volume = 415 (275) VPH

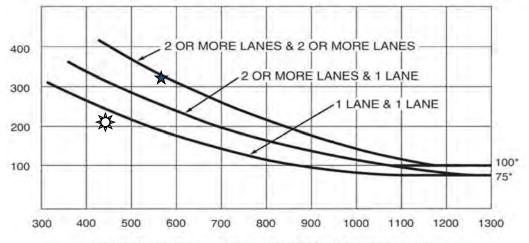
MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

North Avenue Total Volume = 788 (967) VPH

AM Peak Hour Volume – Signal Warrant is Met

★ PM Peak Hour Volume – Signal Warrant is Met



Existing plus Project - AM (PM) Peak Hour Intersection: 4. North Avenue and State Route 99 NB On-Ramp

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

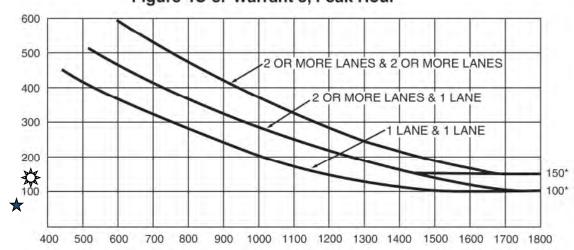
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

North Avenue Eastbound **Left-Through Volume Highest Approach** Volume = 201 (309) VPH

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

North Avenue Westbound Through-Right Volume = 448 (579) VPH


AM Peak Hour Volume – Signal Warrant is Not Met

★ PM Peak Hour Volume – Signal Warrant is Met

Existing plus Project - AM (PM) Peak Hour Intersection: 7. State Route 99 NB Off-Ramp and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour

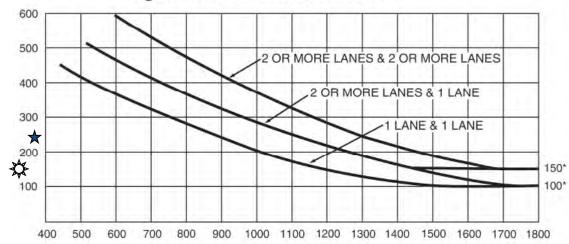
Minor Street Highest Approach Volume = 138 (83) VPH

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume= 177 (155) VPH

AM Peak Hour Volume – Signal Warrant is Not Met


PM Peak Hour Volume – Signal Warrant is Not Met

Existing plus Project - AM (PM) Peak Hour Intersection: 8. Parkway Drive and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour

Minor Street Highest Approach Volume = 142 (236) VPH

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume = 256 (223) VPH

AM Peak Hour Volume – Signal Warrant is Not Met
PM Peak Hour Volume – Signal Warrant is Not Met

Near Term plus Project - AM (PM) Peak Hour Intersection: 3. North Avenue and State Route 99 SB Off-Ramp

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET) 2 OR MORE LANES & 2 OR MORE LANES 400 2 OR MORE LANES & 1 LANE 300 1 LANE & 1 LANE 200 100 100 75* 300 400 500 600 700 800 900 1000 1100 1200 1300

State Route 99 SB Off-Ramp Highest Approach Volume = 765 (370) VPH

> MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

North Avenue Total Volume = 1503 (2036) VPH

AM Peak Hour Volume – Signal Warrant is Met

★ PM Peak Hour Volume – Signal Warrant is Met

Near Term plus Project - AM (PM) Peak Hour Intersection: 4. North Avenue and State Route 99 NB On-Ramp

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET) 2 OR MORE LANES & 2 OR MORE LANES 400 2 OR MORE LANES & 1 LANE 300 LANE & 1 LANE 200 100 100 75* 300 400 500 600 700 800 900 1000 1100 1200 1300

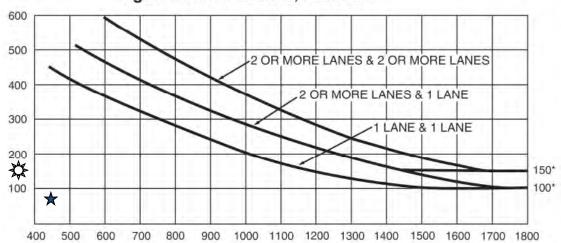
North Avenue Eastbound Left Volume Highest Approach Volume = 307 (762) VPH

> MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

North Avenue Westbound Through-Right Volume = 972 (815) VPH

AM Peak Hour Volume – Signal Warrant is Met


★ PM Peak Hour Volume – Signal Warrant is Met

Near Term plus Project - AM (PM) Peak Hour Intersection: 7. State Route 99 NB Off-Ramp and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour

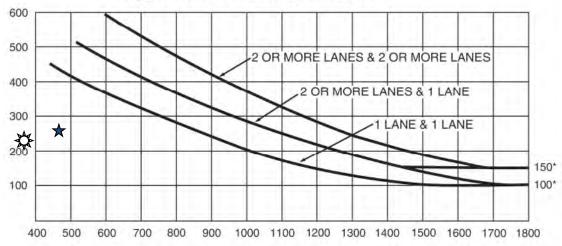
Minor Street Highest Approach Volume = 163 (87) VPH

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume= 300 (431) VPH

AM Peak Hour Volume – Signal Warrant is Not Met


PM Peak Hour Volume – Signal Warrant is Not Met

Near Term plus Project - AM (PM) Peak Hour Intersection: 8. Parkway Drive and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour

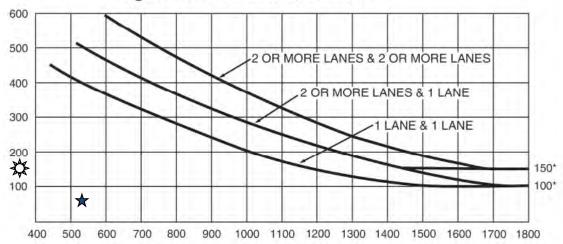
Minor Street Highest Approach Volume = 215 (271) VPH

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume = 392 (471) VPH

AM Peak Hour Volume – Signal Warrant is Not Met


PM Peak Hour Volume – Signal Warrant is Not Met

Cumulative Year 2035 No Project - AM (PM) Peak Hour Intersection: 8. Parkway Drive and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour

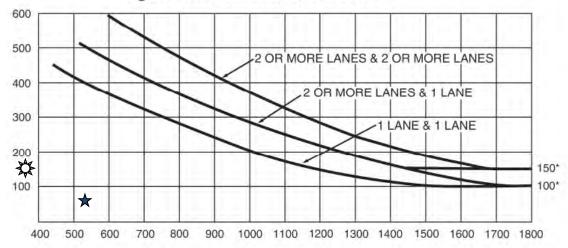
Minor Street Highest Approach Volume = 151 (73) VPH

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume = 346 (522) VPH

AM Peak Hour Volume – Signal Warrant is Not Met


PM Peak Hour Volume – Signal Warrant is Not Met

Cumulative Year 2035 plus Project - AM (PM) Peak Hour Intersection: 8. Parkway Drive and Cedar Avenue

Figure 4C-3. Warrant 3, Peak Hour

Minor Street Highest Approach Volume = 152 (73) VPH

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Major Street Total Volume = 348 (525) VPH

AM Peak Hour Volume – Signal Warrant is Not Met

PM Peak Hour Volume – Signal Warrant is Not Met

