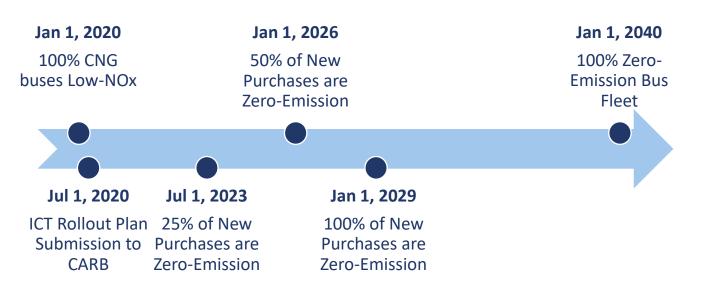
Fresno Area Express: Innovative Clean Transit Regulation Rollout Plan

June 18, 2020

FRESNO AREA

EXPRESS



1726

ZEN and the art of CLEAN ENERGY SOLUTIONS

CARB ICT Regulation

- Innovative Clean Transit (ICT) Regulation adopted December 14, 2018
- Requires agencies to transition fleet to 100% zero-emission by 2040
- FAX qualifies as a large transit agency
- Governing board to approve the Rollout Plan through the adoption of a resolution and submit to CARB by July 1, 2020

ICT Regulation Timeline for a Large Agency

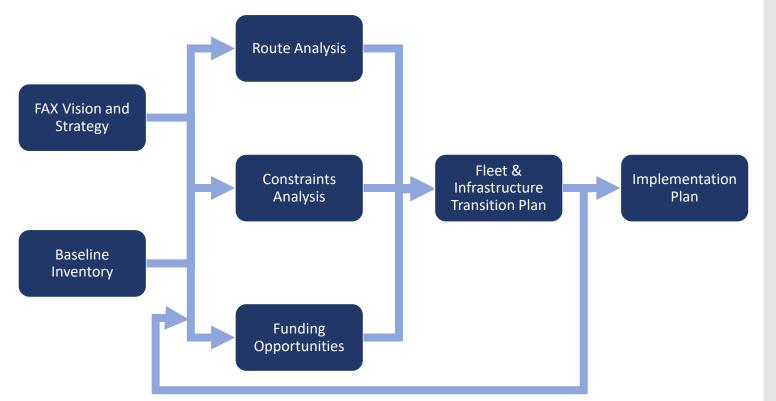
ICT Rollout Plan Requirements

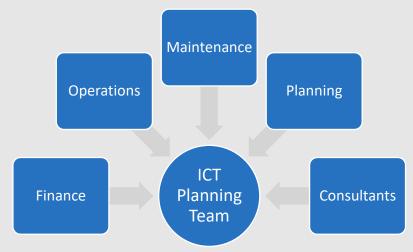
Schedule for replacement of all buses including technology type

Schedule for installation of fuelling/ charging infrastructure

Description of required facility upgrades

Identification of potential funding sources


Description of Impact on disadvantaged communities


Training plan for maintenance and operations staff

ICT Plan Development Process

- Highly iterative and collaborative process to develop optimal plan
- Conducted energy-based modelling to estimate capabilities of battery electric buses on FAX routes and determine fuel cell electric vs battery electric bus split
- Investigated other infrastructure related constraints (e.g., electrical capacity)
- Forecasted cost based on current offerings and projected trends

Working Team

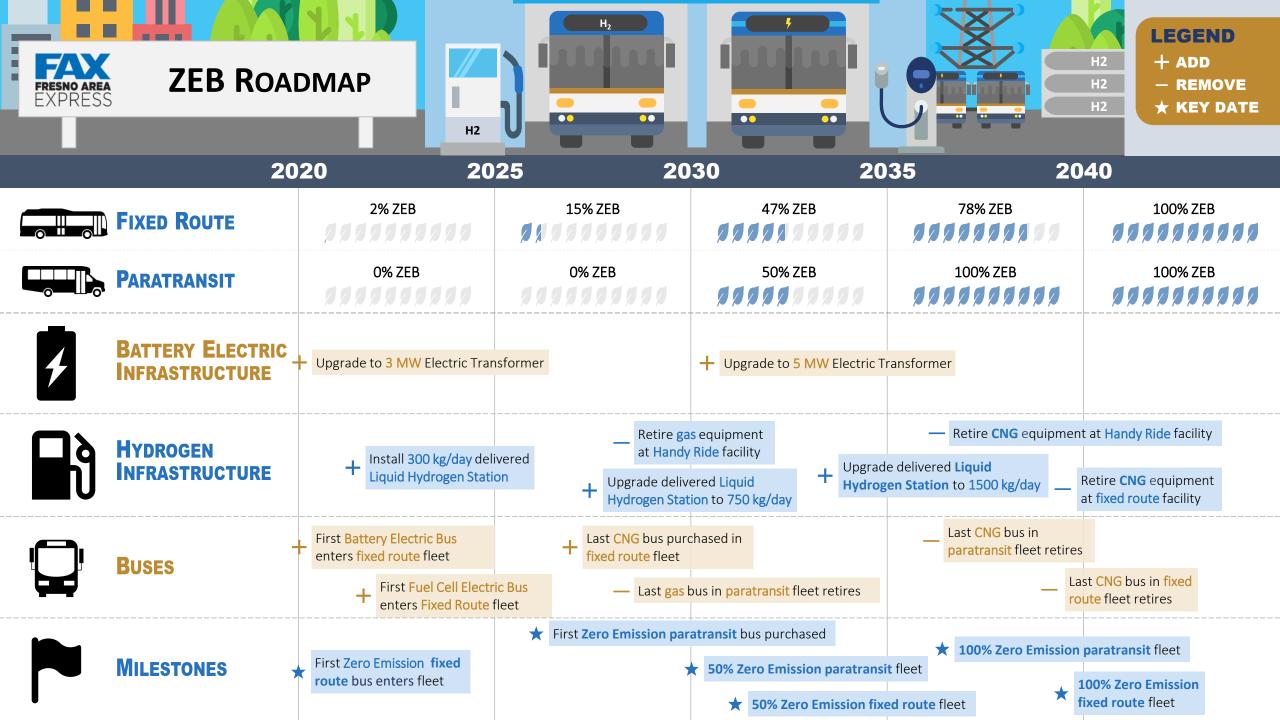
- Developed vision and strategy with FAX working team
- Created a collaborative project team spanning FAX departments
- Held bi-weekly meetings to solicit feedback and promote engagement

Guiding Principles

No buses scheduled to retire before end of useful life

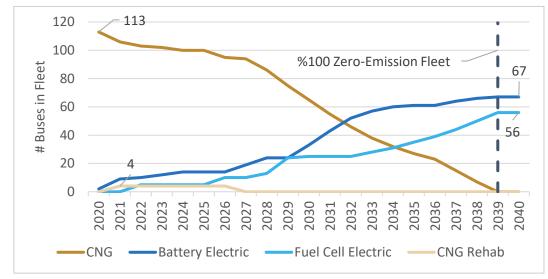
Mix of battery and fuel cell electric buses to optimize performance and minimize cost

Avoid large procurement cost in a single year

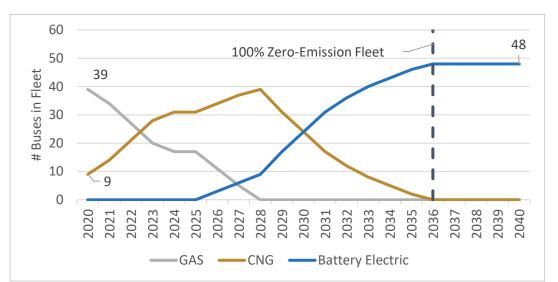


Ensure ICT requirements and PG&E battery electric bus adoption schedule met

Maintain level of service currently provided



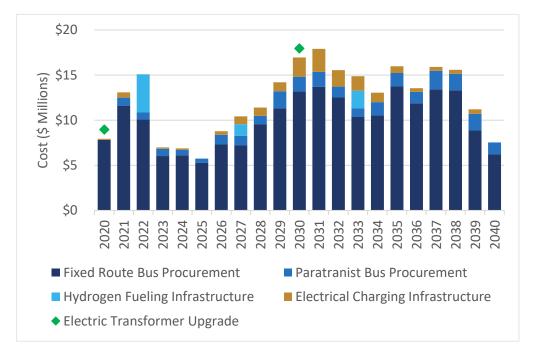
FAX Fleet Composition


Fixed route and paratransit fleet composition from 2020-2040

- Fixed route fleet has early zero-emission bus adoption – driven by PG&E contract
 - 4 CNG buses rehabilitations in 2021 to distribute number of bus procurements per year
 - > 5 fuel cell bus purchases in 2022 to gain experience

- Paratransit fleet transitioned in accordance to the ICT requirements
 - > All replacements before 2026 are CNG
 - Zero-emission purchases begin in 2026

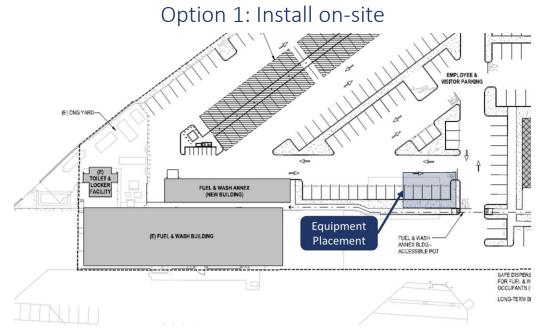
Fixed Route Fleet Transition Plan


Paratransit Fleet Transition Plan

Fixed route fleet 100% zero-emission by 2039 Final composition – 67 Battery, 56 Fuel Cell Paratransit fleet 100% zero-emission by 2036 Final composition – 48 Battery, Fuel Cell

Total Capital Expenditure: 2020-2040

Includes bus purchases and fueling/charging infrastructure


• Costs include zero-emission buses and replacement of CNG vehicles

Capital Expenditure Type	# of Units	Total Cost (\$ Millions)
Battery Bus Chargers	58	\$15.9
Fixed Route Buses	191	\$209.9
Paratransit Buses	123	\$25.4
10 Bus Hydrogen Fueling Station	1	\$4.2
25 Bus Hydrogen Fueling Station Upgrade	1	\$1.3
50 Bus Hydrogen Fueling Station Upgrade	1	\$1.9
Paratransit Buses	123	\$25.4
Total	n/a	\$258.6

Total capital expenditure (buses and infrastructure) 2020 – 2040: \$258.6 million

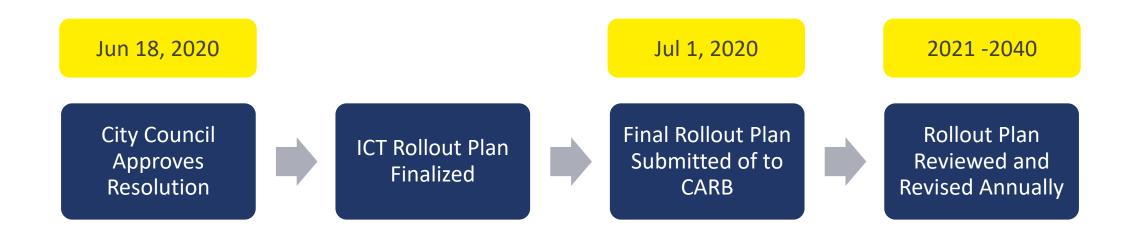
Hydrogen Infrastructure

Pros	Cons
No need to purchase new site	Loss of parking spots $(\sim 11 \text{ spots})$
Fueling logistics unchanged	Potential disruption to traffic flow
	Extra safety precautions required due to proximity to buildings

Pros	Cons
No spatial siting constraints	Cost to purchase land
Additional parking available for fleet	Cost to equip new site (utilities, etc.)
	Change in bus fueling procedure (vehicles must leave yard)

Funding Sources

Transition payed for with annual FTA formula funds and special state and federal funding sources


- Targeted use of federal funds (FTA) following transition plan adoption schedule
 - > Estimated \$114.9 million available over duration of plan
- Special funding from competitive grants and voucher programs will make up the balance.
- In some cases funding from multiple sources can be stacked for a given project or vehicle

Туре	Name	Purpose	Offering	Funds Available	
Compotitivo		Bus procurement and related facilities	80% of capital costs	\$457 million (FY2020)	
Competitive		ZEB procurement and	85-90% of capital costs	\$130 million (FY2020)	
	Emission Vehicle	fuelling/charging infrastructure		+====(===)	
	VW Mitigation ZEE	ZEB procurement	\$400,000/Fuel Cell Bus;	\$130 million	
		\$180,000/Battery Bus	(until exhausted)		
Voucher HVIP		ZEB procurement	\$300,000/Fuel Cell Bus;	\$142 million (FY2019 -	
			\$175,000/Battery	currently exhausted)	

Example Special Funding Programs

Path to Completion

• City Council must approve the rollout plan through the adoption of a resolution prior to submission to California Air Resources Board (CARB)

• Annual review to assess plan based on:

- ► Impact of securing special funding on transition schedule
- > Impact of technology improvement on recommended bus and infrastructure types
- ► Operational learnings
- ► Updated service offerings
- ► Other factors e.g., economic impact of COVID-19

Appendix

Battery Bus Range Analysis

Determining how many blocks in the fleet can be satisfied by battery electric buses

 Battery electric bus range estimated using energy model analyzing requirements on FAX routes

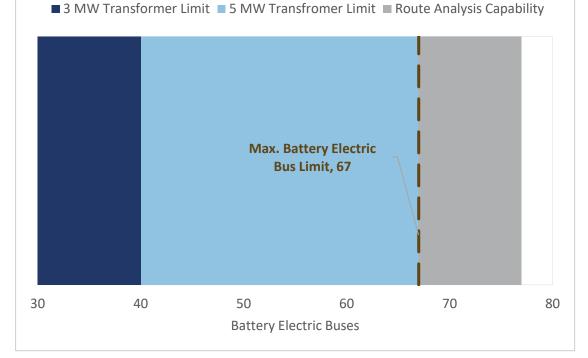
Panga Analysis Typa	Rang	Range (mi)		
Range Analysis Type	E2	E2 Max		
Manufacturer	161-230	232-328		Limitin
Route analysis (New Bus)	140-168	180-190		Limitir Case
Route analysis (10% Degradation)	120-145	180-190	┝─┘	

- Analyzed the average daily percent of buses assigned to routes between ranges:
 - ◆ E2: ≤ 120 miles
 - ◆ E2 Max: > 120 miles & ≤ 180 miles
 - Fuel Cell: > 180 miles
- Analyzed block stats to find percent of routes between vehicle ranges

Parameter	E2	E2 Max	Fuel Cell		
Daily Bus Assignments (%)	6%	57%	38%		Limiting Case
Block Stats (%)	9%	55%	36%	~	

Route Analysis Results

- Analysis accounts for:
 - Bus speed and elevation change
 - Battery degradation from aging
 - Ambient temperature


	Battery Bus Model		
Route Analysis	Proterra E2	Proterra E2 Max	
Block	Completed Distance (mi)		
GPS Data 240	135.49	189.48	
038-003 12.07.19	129.68	184.33	
GPS Data 200	135.49	190.30	
045-002	148.76	205.29	
022-002	148.17	176.09	
GPS Data 150	127.56	150.26	
001-014	139.43 145.		
041-005	130.75	143.46	
009-001	138.13	138.87	
012-003	122.36	137.71	
038-003 Sat	122.36	137.34	
041-006	117.29	117.29	
Range (mi)	120 - 145	180 - 190	

Determining Split of Battery and Fuel Cell Buses

Expected number of battery electric buses primarily limited by available electrical capacity

Electrical Infrastructure Upper Limit

- 3 MW transformer capacity of 20 chargers and 40 battery buses
- 5 MW transformer capacity of 34 chargers and 67 battery buses
- Route Capability Upper Limit
 - Approximately 77 buses could be battery powered depending on specific model of battery buses purchased
- Maximum number of battery buses is based on 5 MW transformer upgrade
- Electrical infrastructure is the primary limiting factor on the number of battery buses in the fleet

Battery Electric Bus Limits based on Electrical Capacity and Route Capability

Final Bus Fleet Composition:

- 67 Battery Electric Buses
- 56 Fuel Cell Electric Buses